BATTERY PROTECTION IC FOR 1-SERIAL TO 4-SERIAL-CELL PACK (SECONDARY PROTECTION)

S-8244 Series

The S-8244 Series is used for secondary protection of lithium-ion batteries with from one to four cells, and incorporates a high-precision voltage detector circuit and a delay circuit. Short-circuits between cells accommodate series connection of one to four cells.

■ Features

(1) Internal high-precision voltage detector circuit

• Overcharge detection voltage range :

3.70 to 4.50 V : Accuracy of ± 25 mV (at +25 °C)
(at a 5 mV/step) Accuracy of ± 50 mV (at -40 to +85 °C)

• Hysteresis : 5 optional models available and selectable:

0.38±0.1 V, 0.25±0.07 V, 0.13±0.04 V, 0.045±0.02 V, None

(2) High withstand voltage device : Absolute maximum rating : 26 V

(3) Wide operating voltage range: 3.6 V to 24 V (refers to the range in which the delay circuit can

operate normally after overvoltage is detected)

(4) Delay time during detection : Can be set by an external capacitor.

(5) Low current consumption : At 3.5 V for each cell : 3.0 μA max. (+25 °C)

At 2.3 V for each cell : 2.4 μ A max. (+25 °C)

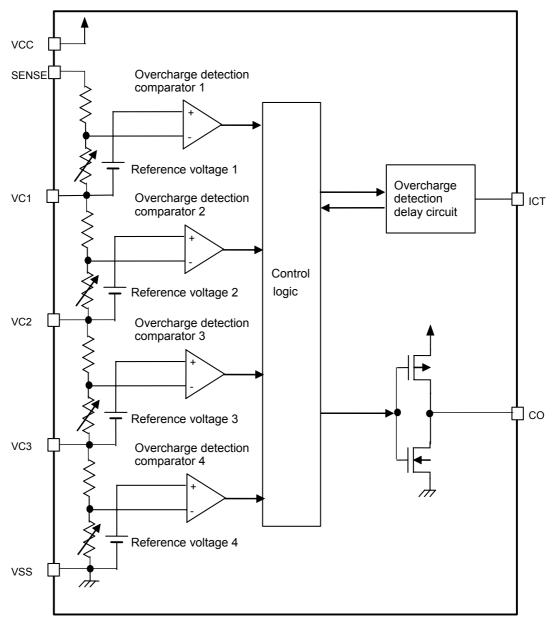
(6) Output logic and form: 4 types

CMOS output active "H" CMOS output active "L"

Pch open drain output active "L" Nch open drain output active "H"

(only CMOS output for 0.045 V hysteresis models)

(7) Lead-free products

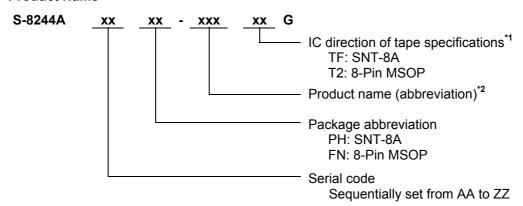

■ Applications

• Lithium ion rechargeable battery packs (secondary protection)

■ Packages

Package name	Drawing code						
	Package Tape Reel						
SNT-8A	PH008-A	PH008-A	PH008-A				
8-Pin MSOP	FN008-A	FN008-A	FN008-A				

■ Block Diagram



Remark In the case of Nch open-drain output, only the Nch transistor will be connected to the CO pin. In the case of Pch open-drain output, only the Pch transistor will be connected to the CO pin.

Figure 1

■ Product Name Structure

1. Product Name

- ***1.** Refer to the taping specifications at the end of this book.
- *2. Refer to the Product Name List.

2. Product Name List

(1) SNT-8A

Table 1

Product name/Item	Overcharge detection voltage [V _{cu}]	Overcharge hysteresis voltage [V _{CD}]	Output form
S-8244AAAPH-CEATFG	$4.45 \pm 0.025 \text{ V}$	0.38 ± 0.1 V	CMOS output active "H"
S-8244AABPH-CEBTFG	$4.20 \pm 0.025 \text{ V}$	0 V	Nch open drain active "H"
S-8244AAFPH-CEFTFG	$4.35 \pm 0.025 \text{ V}$	0.045 ± 0.02 V	CMOS output active "H"
S-8244AAGPH-CEGTFG	$4.45 \pm 0.025 \text{ V}$	$0.045 \pm 0.02 \text{ V}$	CMOS output active "H"

Remark Please contact our sales office for the products with the detection voltage value other than those specified above.

(2) 8-Pin MSOP

Table 2

Product name/Item	Overcharge detection voltage [V _{CU}]	Overcharge hysteresis voltage [V _{CD}]	Output form
S-8244AAAFN-CEAT2G	$4.45 \pm 0.025 \text{ V}$	0.38 ± 0.1 V	CMOS output active "H"
S-8244AABFN-CEBT2G	4.20 ± 0.025 V	0 V	Nch open drain active "H"
S-8244AACFN-CECT2G	4.115 ± 0.025 V	0.13 ± 0.04 V	CMOS output active "H"
S-8244AADFN-CEDT2G	4.20 ± 0.025 V	0 V	Pch open drain active "L"
S-8244AAEFN-CEET2G	4.225 ± 0.025 V	0 V	Nch open drain active "H"
S-8244AAFFN-CEFT2G	$4.35 \pm 0.025 \text{ V}$	$0.045 \pm 0.02 \text{ V}$	CMOS output active "H"
S-8244AAGFN-CEGT2G	$4.45 \pm 0.025 \text{ V}$	$0.045 \pm 0.02 \text{ V}$	CMOS output active "H"
S-8244AAHFN-CEHT2G	$4.30 \pm 0.025 \text{ V}$	$0.25 \pm 0.07 \text{ V}$	CMOS output active "H"
S-8244AAIFN-CEIT2G	$4.40 \pm 0.025 \text{ V}$	$0.045 \pm 0.02 \text{ V}$	CMOS output active "H"
S-8244AAJFN-CEJT2G	$4.50 \pm 0.025 \text{ V}$	$0.38 \pm 0.1 \text{ V}$	CMOS output active "H"
S-8244AAKFN-CEKT2G	$4.475 \pm 0.025 \text{ V}$	$0.38 \pm 0.1 \text{ V}$	CMOS output active "H"
S-8244AALFN-CELT2G	$4.35 \pm 0.025 \text{ V}$	$0.25 \pm 0.07 \text{ V}$	CMOS output active "H"
S-8244AAMFN-CEMT2G	$4.30 \pm 0.025 \text{ V}$	$0.25 \pm 0.07 \text{ V}$	CMOS output active "L"
S-8244AANFN-CENT2G	$4.15 \pm 0.025 \text{ V}$	$0.25 \pm 0.07 \text{ V}$	CMOS output active "H"
S-8244AAOFN-CEOT2G	4.25 ± 0.025 V	$0.25 \pm 0.07 \text{ V}$	CMOS output active "H"
S-8244AAPFN-CEPT2G	4.05 ± 0.025 V	$0.25 \pm 0.07 \text{ V}$	CMOS output active "H"
S-8244AAQFN-CEQT2G	4.15 ± 0.025 V	0 V	Nch open drain active "H"
S-8244AARFN-CERT2G	$4.30 \pm 0.025 \text{ V}$	$0.25 \pm 0.07 \text{ V}$	Nch open drain active "H"

Remark Please contact our sales office department for the products with the detection voltage value other than those specified above.

■ Pin Configurations

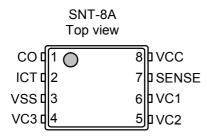


Table 3

		1 0.010
Pin No.	Symbol	Description
1	CO	FET gate connection pin for charge control
2	ICT	Capacitor connection pin for overcharge detection delay
3	VSS	Negative power input pin Negative voltage connection pin of Battery 4
4	VC3	Negative voltage connection pin of Battery 3 Positive voltage connection pin of Battery 4
5	VC2	Negative voltage connection pin of Battery 2 Positive voltage connection pin of Battery 3
6	VC1	Negative voltage connection pin of Battery 1 Positive voltage connection pin of Battery 2
7	SENSE	Positive voltage connection pin of Battery 1
8	VCC	Positive power input pin

Figure 2

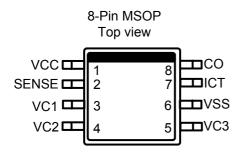


Table 4

		Tubic 4
Pin No.	Symbol	Description
1	VCC	Positive power input pin
2	SENSE	Positive voltage connection pin of Battery 1
3	VC1	Negative voltage connection pin of Battery 1 Positive voltage connection pin of Battery 2
4	VC2	Negative voltage connection pin of Battery 2 Positive voltage connection pin of Battery 3
5	VC3	Negative voltage connection pin of Battery 3 Positive voltage connection pin of Battery 4
6	VSS	Negative power input pin Negative voltage connection pin of Battery 4
7	ICT	Capacitor connection pin for overcharge detection delay
8	CO	FET gate connection pin for charge control

Figure 3

■ Absolute Maximum Ratings

Table 5

(Ta = 25 °C unless otherwise specified)

Item		Symbol	Applied pin	Rating	Unit
Input voltage between	n VCC and VSS	V_{DS}	VCC	V_{SS} -0.3 to V_{SS} +26	V
Delay capacitor conn	ection pin voltage	V_{ICT}	ICT	V_{SS} –0.3 to V_{CC} +0.3	V
Input pin voltage		V_{IN}	SENSE, VC1, VC2, VC3	V_{SS} –0.3 to V_{CC} +0.3	V
CO output pin voltage	(CMOS output)	V_{CO}	CO	V_{SS} –0.3 to V_{CC} +0.3	V
	(Nch open drain output)			$V_{\rm SS}$ –0.3 to 26	V
	(Pch open drain output)			$V_{\rm CC}$ –26 to $V_{\rm CC}$ +0.3	V
Power dissipation	SNT-8A	P_{D}	_	450 ^{*1}	mW
	8-Pin MSOP			300	mW
Operating ambient temperature		T _{opr}	_	-40 to +85	°C
Storing temperature		T _{stg}	_	-40 to +125	°C

^{*1.} When mounted on printed circuit board

[Mounted board]

(1) Board size : $114 \text{ mm} \times 76 \text{ mm} \times t1.6 \text{ mm}$ (2) Name : JEDEC STANDARD51-7

Caution The absolute maximum ratings are rated values exceeding which the product could suffer physical damage. These values must therefore not be exceeded under any conditions.

■ Electrical Characteristics

Table 6

(Ta = 25 °C unless otherwise specified)

				(lilei wise s	<u>' </u>
Item	Symbol	Conditions	Min.	Тур.	Max.	Unit	Test conditions	Test circuit
DETECTION VOLTAGE								
Overcharge detection voltage 1 *1	V _{CU1}	3.7 to 4.5 V Adjustment	V _{CU1} -0.025	V _{CU1}	V _{CU1} +0.025	٧	1	1
Overcharge detection voltage 2 *1	V _{CU2}	3.7 to 4.5 V Adjustment	V _{CU2} -0.025	V _{CU2}	V _{CU2} +0.025	٧	2	1
Overcharge detection voltage 3 *1	V _{CU3}	3.7 to 4.5 V Adjustment	V _{CU3} -0.025	V _{CU3}	V _{CU3} +0.025	V	3	1
Overcharge detection voltage 4 *1	V _{CU4}	3.7 to 4.5 V Adjustment	V _{CU4} -0.025	V_{CU4}	V _{CU4} +0.025	V	4	1
Overcharge hysteresis voltage 1 *2	V_{CD1}	_	0.28	0.38	0.48	V	1	1
Overcharge hysteresis voltage 2 *2	V_{CD2}	_	0.28	0.38	0.48	V	2	1
Overcharge hysteresis voltage 3 *2	V _{CD3}	_	0.28	0.38	0.48	V	3	1
Overcharge hysteresis voltage 4 *2	V_{CD4}	_	0.28	0.38	0.48	V	4	1
Detection voltage temperature coefficient *3	T _{COE}	Ta=-40 to +85 °C	-0.4	0.0	+0.4	mV/°C	_	_
DELAY TIME								
Overcharge detection delay time	t _{cu}	C=0.1 μF	1.0	1.5	2.0	S	5	2
OPERATING VOLTAGE		·						
Operating voltage between VCC and VSS *4	V _{DSOP}	_	3.6	_	24	٧	_	_
CURRENT CONSUMPTION								
Current consumption during normal operation	I _{OPE}	V1=V2=V3=V4=3.5V	_	1.5	3.0	μΑ	6	3
Current consumption at power down	I _{PDN}	V1=V2=V3=V4=2.3V	_	1.2	2.4	μΑ	6	3
VC1 sink current	I _{VC1}	V1=V2=V3=V4=3.5V	-0.3	_	0.3	μA	6	3
VC2 sink current	I _{VC2}	V1=V2=V3=V4=3.5V	-0.3	_	0.3	μA	6	3
VC3 sink current	I _{VC3}	V1=V2=V3=V4=3.5V	-0.3	_	0.3	μA	6	3
OUTPUT VOLTAGE ^{*5}								
CO "H" voltage	V _{CO(H)}	at I _{OUT} = 10 μA	V _{CC} -0.05		_	V	7	4
CO "L" voltage	V _{CO(L)}	at I _{OUT} = 10 μA		_	V _{SS} +0.05	V	7	4

^{*1.} ± 50 mV when Ta = -40 to +85 °C.

^{*2. 0.25±0.07} V, 0.13±0.04 V, 0.045±0.02 V except for 0.38 V hysteresis models.

^{*3.} Overcharge detection voltage or overcharge hysteresis voltage.

^{*4.} Operating voltage indicates that the delay circuit operates normally after an overcharge is detected.

^{*5.} Output logic and CMOS or open drain output can be selected.

■ Test Circuits

(1) Test Condition 1, Test Circuit 1

Conditions:

- Set switches 1 and 2 to OFF for CMOS output models.
- Set switch 1 to ON and switch 2 to OFF for Nch open drain models.
- Set switch 1 to OFF and switch 2 to ON for Pch open drain models.

Definitions:

• Set V1, V2, V3 and V4 to 3.5 V and gradually increase V1:

Overcharge detection voltage 1 (V_{CU1}) is defined as V1 voltage when CO is turned to "H" (for CMOS output active "H" or Nch open drain) or "L" (for CMOS output active "L" or Pch open drain).

• Next, gradually decrease V1:

Overcharge hysteresis voltage V_{CD1} is defined as a difference between V_{CU1} and V1 when CO is turned to "L" (for CMOS output active "H" or Nch open drain) or "H" (for CMOS output active "L" or Pch open drain).

(2) Test Condition 2, Test Circuit 1

Conditions:

- Set switches 1 and 2 to OFF for CMOS output models.
- Set switch 1 to ON and switch 2 to OFF for Nch open drain models.
- Set switch 1 to OFF and switch 2 to ON for Pch open drain models.

Definitions:

• Set V1, V2, V3 and V4 to 3.5 V and gradually increase V2.

Overcharge detection voltage 2 (V_{CU2}) is defined as V2 voltage when CO is turned to "H" (for CMOS output active "H" or Nch open drain) or "L" (for CMOS output active "L" or Pch open drain).

Next, gradually decrease V2.

Overcharge hysteresis voltage V_{CD2} is defined as a difference between V_{CU2} and V2 when CO is turned to "L" (for CMOS output active "H" or Nch open drain) or "H" (for CMOS output active "L" or Pch open drain).

(3) Test Condition 3, Test Circuit 1

Conditions:

- Set switches 1 and 2 to OFF for CMOS output models.
- Set switch 1 to ON and switch 2 to OFF for Nch open drain models.
- Set switch 1 to OFF and switch 2 to ON for Pch open drain models.

Definitions:

Set V1, V2, V3 and V4 to 3.5 V and gradually increase V3.

Overcharge detection voltage 3 (V_{CU3}) is defined as V3 voltage when CO is turned to "H" (for CMOS output active "H" or Nch open drain) or "L" (for CMOS output active "L" or Pch open drain).

• Next gradually decrease V3.

Overcharge hysteresis voltage V_{CD3} is defined as a difference between V_{CU3} and V3 when CO is turned to "L" (for CMOS output active "H" or Nch open drain) or "H" (for CMOS output active "L" or Pch open drain).

(4) Test Condition 4, Test Circuit 1

Conditions:

- Set switches 1 and 2 to OFF for CMOS output models.
- Set switch 1 to ON and switch 2 to OFF for Nch open drain models.
- Set switch 1 to OFF and switch 2 to ON for Pch open drain models.

Definitions:

• Set V1, V2, V3 and V4 to 3.5 V and gradually increase V4.

Overcharge detection voltage 4 (V_{CU4}) is defined as V4 voltage when CO is turned to "H" (for CMOS output active "H" or Nch open drain) or "L" (for CMOS output active "L" or Pch open drain).

• Next, gradually decrease V4.

Overcharge hysteresis voltage V_{CD4} is defined as a difference between V_{CU4} and V4 when CO is turned to "L" (for CMOS output active "H" or Nch open drain) or "H" (for CMOS output active "L" or Pch open drain).

(5) Test Condition 5, Test Circuit 2

Conditions:

- Set switches 1 and 2 to OFF for CMOS output models.
- Set switch 1 to ON and switch 2 to OFF for Nch open drain models.
- Set switch 1 to OFF and switch 2 to ON for Pch open drain models.

Definition:

Set V1, V2, V3 and V4 to 3.5 V and momentarily rise V1 to 4.7 V within10 μs.
 Overcharge detection delay time (t_{CU}) is the period from when V1 goes 4.7 V to when CO is turned to "H" (for CMOS output active "H" or Nch open drain) or "L" (for CMOS output active "L" or Pch open drain).

(6) Test Condition 6, Test Circuit 3

Conditions:

- Set V1, V2, V3 and V4 to 2.3 V.
- Measure current consumption (I1).

Definition:

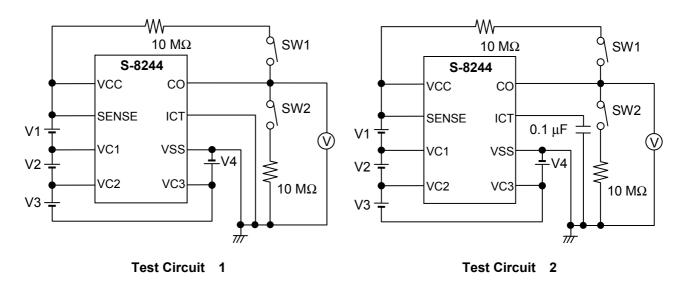
• The current consumption (I1) is defined as current consumption at power down (I_{PDN}).

Conditions:

- Set V1, V2, V3 and V4 to 3.5 V.
- Measure current consumption I1, I2, I3, and I4.

Definition:

•The current consumption (I1) is defined as current consumption during normal operation (I_{OPE}), the current consumption (I2) as VC1 sink current (I_{VC1}), the current consumption (I3) as V_{C2} sink current (I_{VC2}), and the current consumption (I4) as V_{C3} sink current (I_{VC3}), respectively.


Test Condition 7, Test Circuit 4

Conditions:

• Set switch 1 to OFF and switch 2 to ON.

Definitions:

- Set V1, V2, V3 and V4 to 4.6 V and gradually decrease V6 from V_{CC} (for CMOS output active "H" models).
 - V6 voltage is defined as $V_{\text{CO (H)}}$ when I2 (= -10 $\mu A)$ flows.
- Set V1, V2, V3 and V4 to 3.5 V and gradually decrease V6 from V_{CC} (for CMOS output active "L" or Pch open drain models).
 - V6 voltage is defined as $V_{CO\,(H)}$ when I2 (= -10 μ A) flows.
- Set V1, V2, V3 and V4 to 4.6 V and gradually increase V6 from 0 V (for CMOS output active "L" models).
 - V6 voltage is defined as $V_{CO\,(L)}$ when I2 (= 10 μ A) flows.
- Set V1, V2, V3 and V4 to 3.5 V and gradually increase V6 from 0 V (for CMOS output active "H" or Nch open drain models).
 - V6 voltage is defined as $V_{CO(L)}$ when I2 (= 10 μ A) flows.

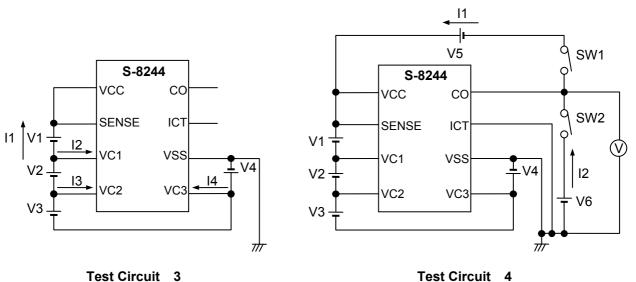


Figure 4

Test Circuit 3

■ Operation

Overcharge Detection

CO is turned to "H" (for CMOS output active "H" or Nch open drain models) or "L" (for CMOS output active "L" or Pch open drain models) when the voltage of one of the batteries exceeds the overcharge detection voltage (V_{CU}) during charging under normal conditions beyond the overcharge detection delay time (t_{CU}). This state is called "overcharge." Attaching FET to the CO pin provides charge control and a second protection. At that time, the overcharge state is maintained until the voltage of all batteries decreases from the overcharge detection voltage (V_{CU}) by the equivalent to the overcharge hysteresis voltage (V_{CD}).

Delay Circuit

The delay circuit rapidly charges the capacitor connected to the delay capacitor connection pin up to a specified voltage when the voltage of one of the batteries exceeds the overcharge detection voltage (V_{CU}) . Then, the delay circuit gradually discharges the capacitor at 100 nA and inverts the CO output when the voltage at the delay capacitor connection pin goes below a specified level. Overcharge detection delay time (t_{CU}) varies depending upon the external capacitor.

Each delay time is calculated using the following equation.

$$\label{eq:min.to_model} \begin{array}{cccc} & & \text{Min.} & \text{Typ.} & \text{Max.} \\ t_{\text{CU}}[s] = \text{Delay Coefficient} & & (10, & 15, & 20) \ \times & C_{\text{ICT}}\left[\mu F\right] \end{array}$$

Because the delay capacitor is rapidly charged, the smaller the capacitance, the larger the difference between the maximum voltage and the specified value of delay capacitor pin (ICT pin). This will cause a deviation between the calculated delay time and the resultant delay time. Also, delay time is internally set in this IC to prevent the CO output from inverting until the charge to delay capacitor pin is reached to the specified voltage. If large capacitance is used, output may be enabled without delay time because charge is disabled within the internal delay time.

Please note that the maximum capacitance connected to the delay capacitor pin (ICT pin) is 1 μ F.

■ Timing Chart

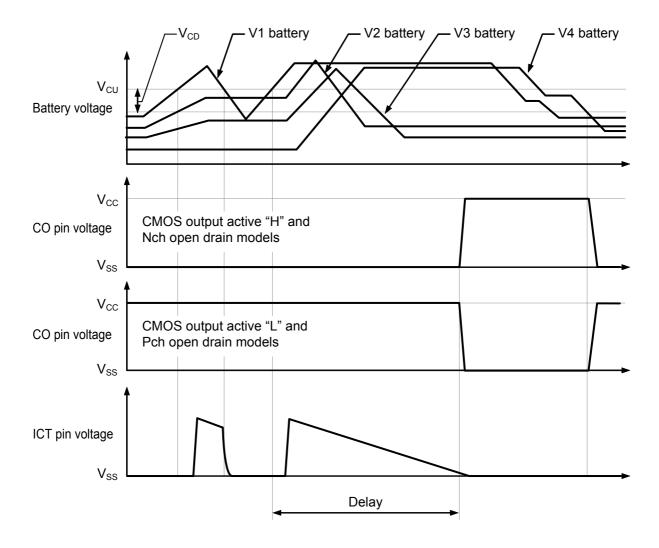


Figure 5

■ Battery Protection IC Connection Example

(1) Connection Example 1

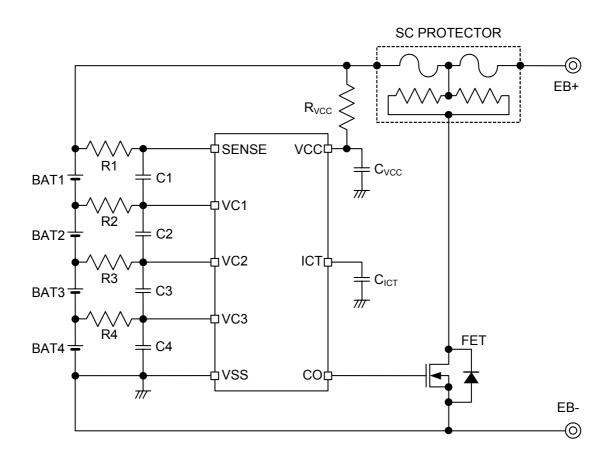


Figure 6

Table 7 Constants for External Components 1

Table : Senetante lei External sempendite :						
Symbol	Min.	Тур.	Max.	Unit		
R1 to R4	0	1 k	10 k	Ω		
C1 to C4	0	0.1	1	μF		
R _{VCC}	0	100	1 k	Ω		
C_VCC	0	0.1	1	μF		
C_{ICT}	0	0.1	1	μF		

Caution1. The above constants may be changed without notice.

- 2. It has not been confirmed whether the operation is normal or not in circuits other than the above example of connection. In addition, the example of connection shown above and the constant do not guarantee proper operation. Perform through evaluation using the actual application to set the constant.
- 3. In the case of Nch open drain output, pull up CO pin by external resistor.

[For SC PROTECTOR, contact]

Sony Chemicals Corporation

Electronic Devices Business Group

1-11-2 Osaki, Shinagawa-ku, Tokyo, 141-0032 Japan

TEL: +81-3-5435-3943 FAX: +81-3-5435-3072

(2) Connection Example 2

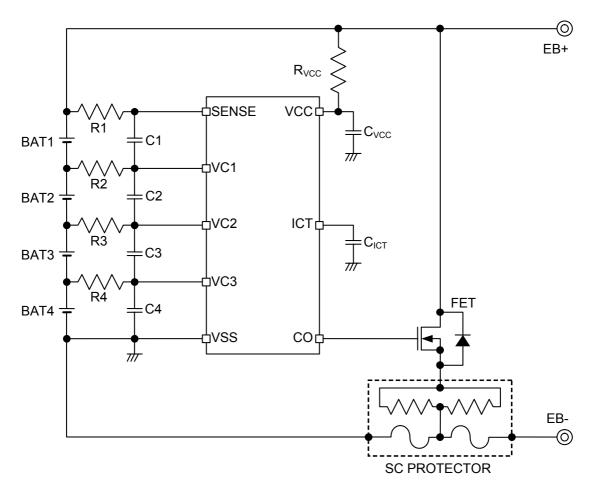


Figure 7

Table 8 Constants for External Components 2

Symbol	Min.	Тур.	Max.	Unit
R1 to R4	0	1 k	10 k	Ω
C1 to C4	0	0.1	1	μF
R _{VCC}	0	100	1 k	Ω
C_VCC	0	0.1	1	μF
C_{ICT}	0	0.1	1	μF

- 2. It has not been confirmed whether the operation is normal or not in circuits other than the above example of connection. In addition, the example of connection shown above and the constant do not guarantee proper operation. Perform through evaluation using the actual application to set the constant.
- 3. In the case of Nch open drain output, pull up CO pin by external resistor.

(3) Connection Example 3 (for 3-cells)

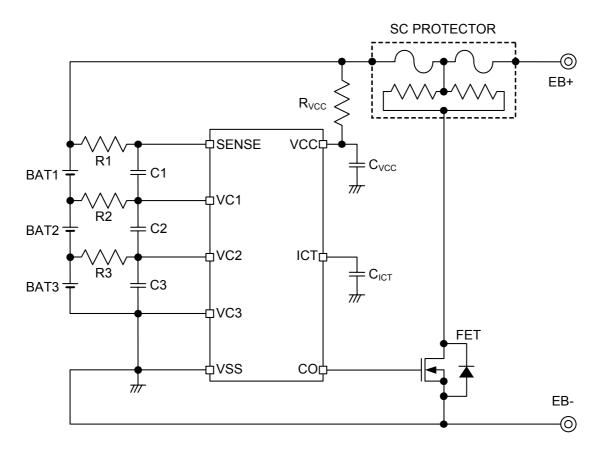


Figure 8

Table 9 Constants for External Components 3

Symbol	Min.	Тур.	Max.	Unit
R1 to R3	0	1 k	10 k	Ω
C1 to C3	0	0.1	1	μF
R _{VCC}	0	100	1 k	Ω
C_VCC	0	0.1	1	μF
C _{ICT}	0	0.1	1	μF

- 2. It has not been confirmed whether the operation is normal or not in circuits other than the above example of connection. In addition, the example of connection shown above and the constant do not guarantee proper operation. Perform through evaluation using the actual application to set the constant.
- 3. In the case of Nch open drain output, pull up CO pin by external resistor.

(4) Connection Example 4 (for 2-cells)

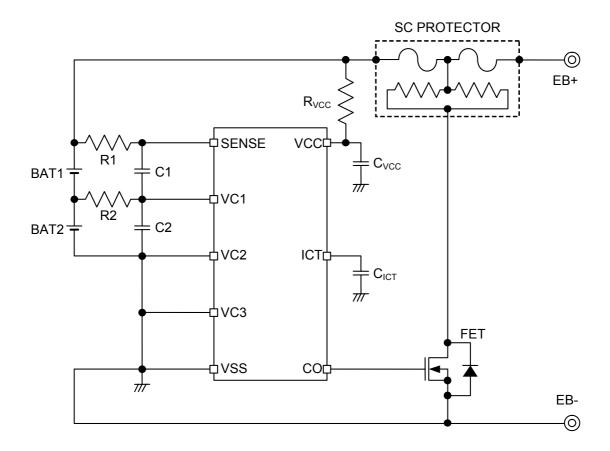


Figure 9

Table 10 Constants for External Components 4

Symbol	Min.	Тур.	Max.	Unit
R1, R2	0	1 k	10 k	Ω
C1, C2	0	0.1	1	μF
R _{VCC}	0	100	1 k	Ω
C_VCC	0	0.1	1	μF
C _{ICT}	0	0.1	1	μF

- 2. It has not been confirmed whether the operation is normal or not in circuits other than the above example of connection. In addition, the example of connection shown above and the constant do not guarantee proper operation. Perform through evaluation using the actual application to set the constant.
- 3. In the case of Nch open drain output, pull up CO pin by external resistor.

(5) Connection Example 5 (for 1-cell)

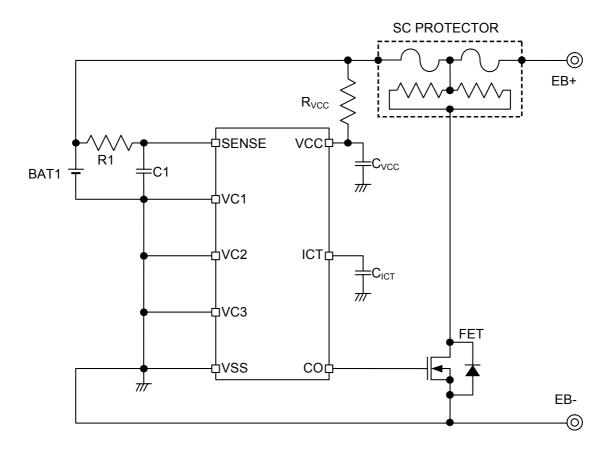
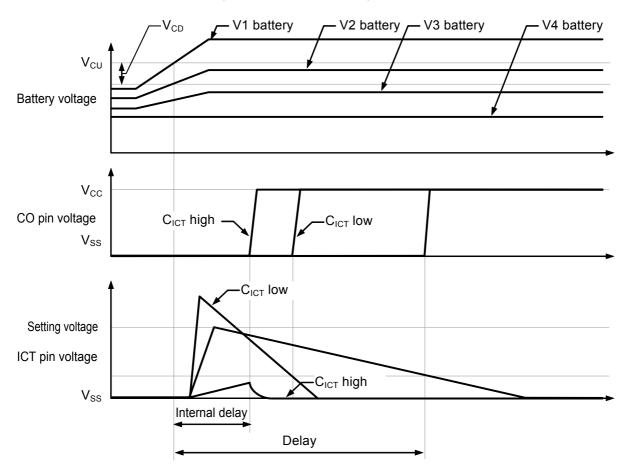


Figure 10

Table 11 Constants for External Components 5

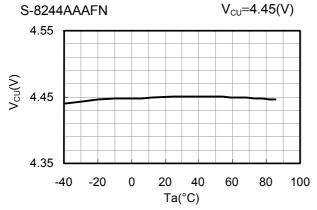

Symbol	Min.	Тур.	Max.	Unit		
R1	0	1 k	10 k	Ω		
C1	0	0.1	1	μF		
R _{VCC}	0	100	1 k	Ω		
C_{VCC}	0	0.1	1	μF		
C_{ICT}	0	0.1	1	μF		

- 2. It has not been confirmed whether the operation is normal or not in circuits other than the above example of connection. In addition, the example of connection shown above and the constant do not guarantee proper operation. Perform through evaluation using the actual application to set the constant.
- 3. In the case of Nch open drain output, pull up CO pin by external resistor.

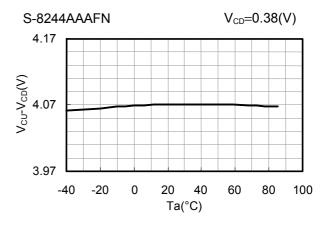
■ Precautions

- This IC charges the delay capacitor through the delay capacitor pin (ICT pin) immediately when the voltage of one of batteries V1 to V4 reaches the overcharge voltage. Therefore, setting the resistor connected to the VCC pin to any value greater than the recommended level causes a reduction in the IC power supply voltage because of charge current of the delay capacitor. This may lead to a malfunction. Set up the resistor NOT to exceed the typical value. If you change the resistance, please consult us.
- DO NOT connect any of overcharged batteries. Even if only one overcharged battery is connected to
 this IC, the IC detects overcharge, then charge current flows to the delay capacitor through the
 parasitic diode between pins where the battery is not connected yet. This may lead to a malfunction.
 Please perform sufficient evaluation in the case of use. Depending on an application circuit, even
 when the fault charge battery is not contained, the connection turn of a battery may be restricted in
 order to prevent the output of CO detection pulse at the time of battery connection.

CMOS output active "H" and Nch open drain models

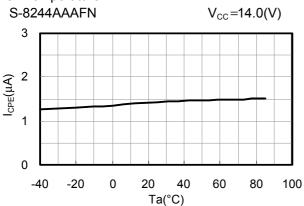


- In this IC, the output logic of the CO pin is inverted after several milliseconds of internal delay if this IC is under the overcharge condition even ICT pin is either "V_{SS}-short circuit," "V_{DD}-short circuit" or "Open" status.
- Any position from V1 to V4 can be used when applying this IC for a one to three-cell battery. However, be sure to short circuit between pins not in use (SENSE-VC1, VC1-VC2, VC2-VC3, or VC3-VSS).
- The application conditions for the input voltage, output voltage, and load current should not exceed the package power dissipation.
- Do not apply an electrostatic discharge to this IC that exceeds the performance ratings of the built-in electrostatic protection circuit.
- SII claims no responsibility for any and all disputes arising out of or in connection with any infringement
 of the products including this IC upon patents owned by a third party.

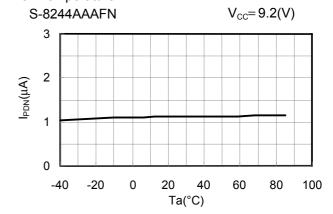

■ Characteristics (Typical Data)

1. Detection Voltage vs. Temperature

Overcharge Detection Voltage vs. Temperature

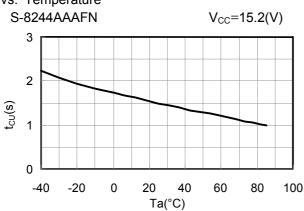


Overcharge Release Voltage vs. Temperature

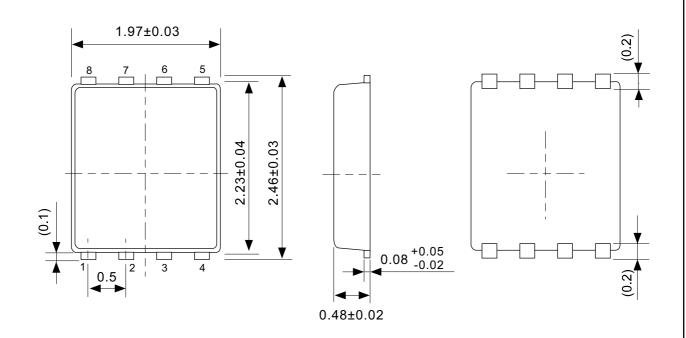


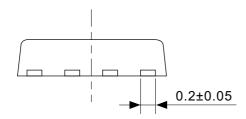
2. Current Consumption vs. Temperature

Current Consumption during Normal Operation vs. Temperature

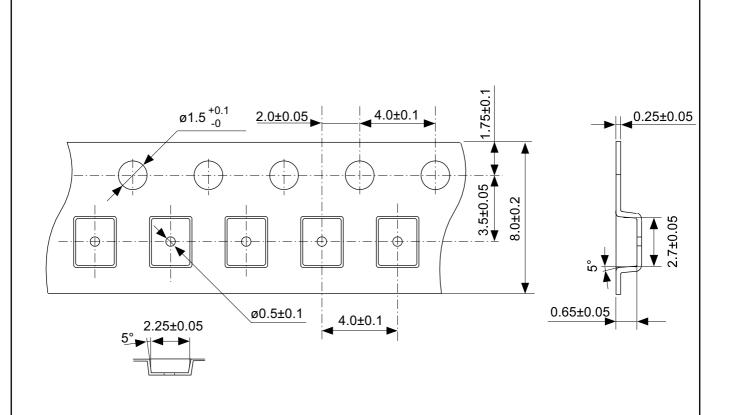


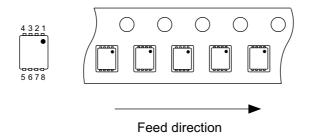
Current Consumption at Power Down vs. Temperature



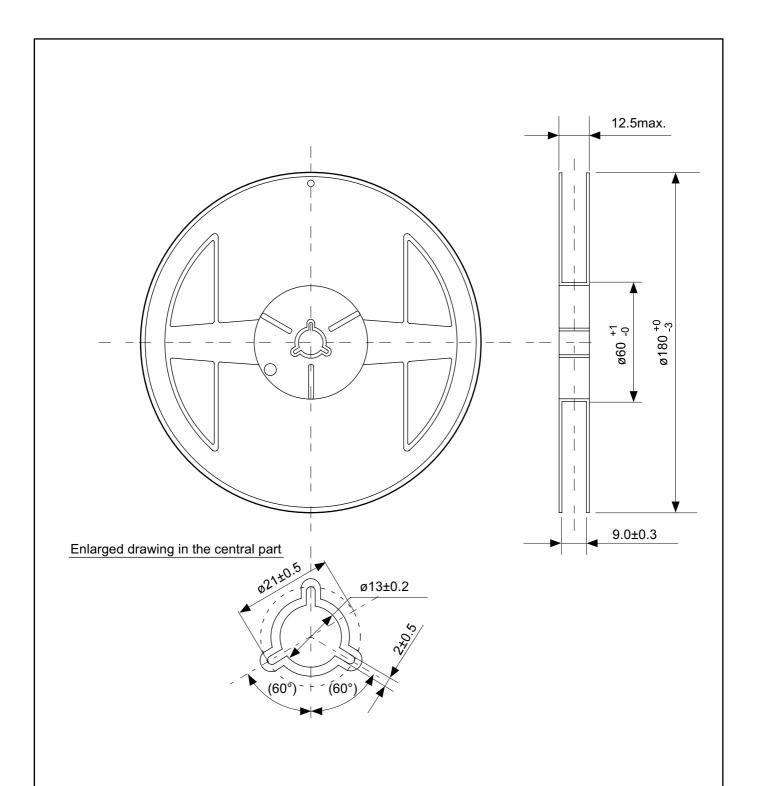

3. Delay Time vs. Temperature

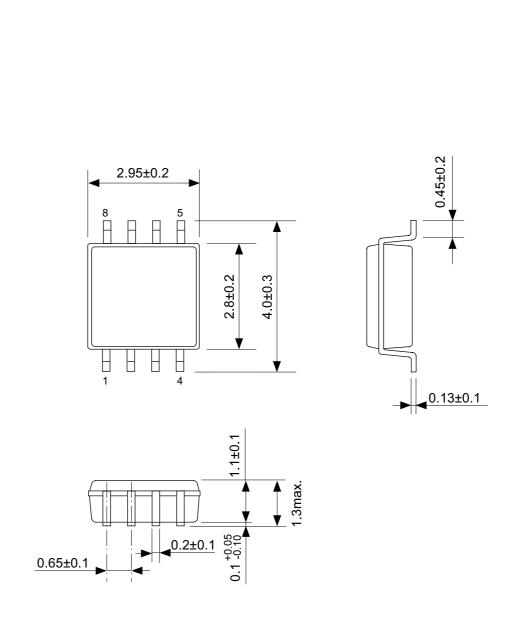
Overcharge Detection Delay Time vs. Temperature


Caution Please design all applications of the S-8244 Series with safety in mind.

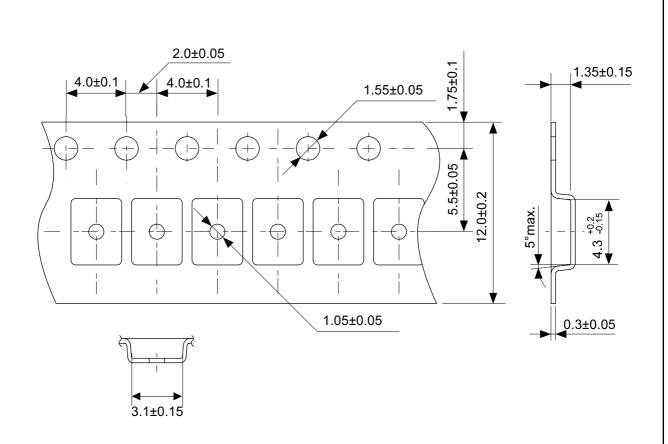


No. PH008-A-P-SD-2.0


TITLE	SNT-8A-A-PKG Dimensions	
No.	PH008-A-P-SD-2.0	
SCALE		
UNIT	mm	
<u> </u>		
Seiko Instruments Inc.		

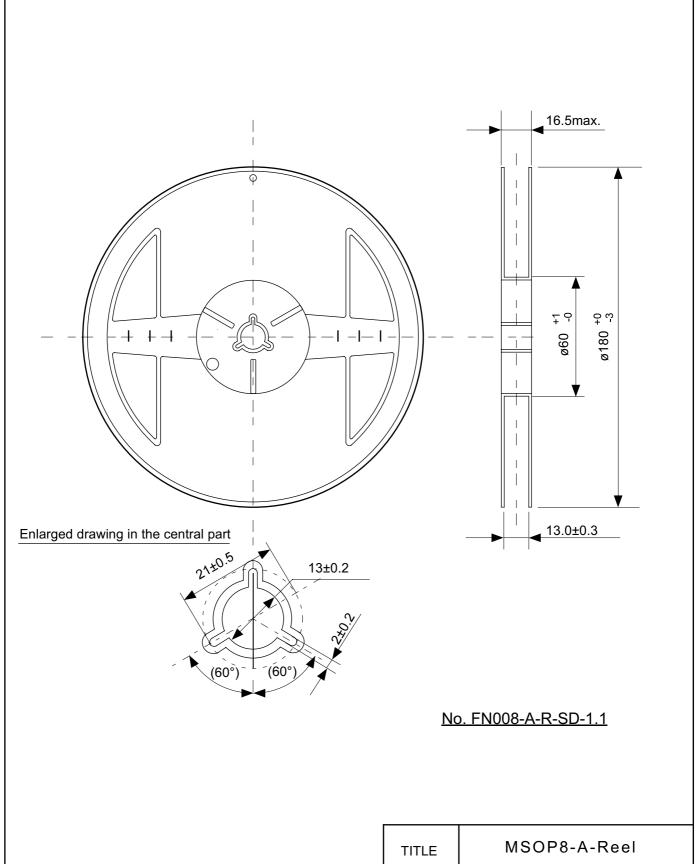

No. PH008-A-C-SD-1.0

TITLE	SNT-8A-A-Carrier Tape		
No.	PH008-A-C-SD-1.0		
SCALE			
UNIT	mm		
Seiko Instruments Inc.			


No. PH008-A-R-SD-1.0

TITLE	SNT-8A-A-Reel		
No.	PH008-A-R-SD-1.0		
SCALE		QTY.	5,000
UNIT	mm		
Seiko Instruments Inc.			

No. FN008-A-P-SD-1.1


TITLE	MSOP8-A-PKG Dimensions
No.	FN008-A-P-SD-1.1
SCALE	
UNIT	mm
	Seiko Instruments Inc.

No. FN008-A-C-SD-1.1

TITLE	MSOP8-A-Carrier Tape
No.	FN008-A-C-SD-1.1
SCALE	
UNIT	mm
	Seiko Instruments Inc.

TITLE	MSOP8-A-Reel			
No.	FN008-A-R-SD-1.1			
SCALE		QTY.	3,000	
UNIT	mm			
Seiko Instruments Inc.				

- The information described herein is subject to change without notice.
- Seiko Instruments Inc. is not responsible for any problems caused by circuits or diagrams described herein whose related industrial properties, patents, or other rights belong to third parties. The application circuit examples explain typical applications of the products, and do not guarantee the success of any specific mass-production design.
- When the products described herein are regulated products subject to the Wassenaar Arrangement or other agreements, they may not be exported without authorization from the appropriate governmental authority.
- Use of the information described herein for other purposes and/or reproduction or copying without the express permission of Seiko Instruments Inc. is strictly prohibited.
- The products described herein cannot be used as part of any device or equipment affecting the human body, such as exercise equipment, medical equipment, security systems, gas equipment, or any apparatus installed in airplanes and other vehicles, without prior written permission of Seiko Instruments Inc.
- Although Seiko Instruments Inc. exerts the greatest possible effort to ensure high quality and reliability, the failure or malfunction of semiconductor products may occur. The user of these products should therefore give thorough consideration to safety design, including redundancy, fire-prevention measures, and malfunction prevention, to prevent any accidents, fires, or community damage that may ensue.