

BT151S series

Thyristors

Rev. 04 — 9 June 2004

Product data sheet

1.1 General description

Passivated thyristors in a SOT428 plastic package.

1.2 Features

- High thermal cycling performance
- High bidirectional blocking voltage capability
- Surface mounted package.

1.3 Applications

Motor control

Industrial and domestic lighting, heating and static switching.

1.4 Quick reference data

- V_{DRM}, V_{RRM} ≤ 800 V (BT151S-800R)
- V_{DRM} , $V_{RRM} \le 650 \text{ V (BT151S-650R)}$
- V_{DRM} , $V_{RRM} \le 500 \text{ V (BT151S-500R)}$
- I_{T(RMS)} \leq 12 A
- $I_{T(AV)} \le 7.5 \text{ A}$
- $I_{TSM} \le 120 \text{ A}.$

2. Pinning information

Table 1: Discrete pinning

Pin	Description	Simplified outline	Symbol
1	cathode (k)		N 1
2	anode (a)		+
3	gate (g)		sym037
mb	mounting base; connected to anode (a)	1 2 3	
		Top view	
		SOT428	

3. Ordering information

Table 2: Ordering information

Type number	Package		
	Name	Description	Version
BT151S-500R	-	plastic single-ended surface mounted package (Philips version of D-PAK);	
BT151S-650R		3 leads (one lead cropped)	
BT151S-800R			

4. Limiting values

Table 3: Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions		Min	Max	Unit
V_{DRM}, V_{RRM}	repetitive peak off-state voltage					
	BT151S-500R		[1]	-	500	V
	BT151S-650R		[1]	-	650	V
	BT151S-800R			-	800	V
I _{T(AV)}	average on-state current	half sinewave; T _{mb} ≤ 103 °C; <u>Figure 1</u>		-	7.5	Α
I _{T(RMS)}	RMS on-state current	all conduction angles; Figure 4 and Figure 5		-	12	Α
I _{TSM}	non-repetitive peak on-state current	half sinewave; $T_j = 25$ °C prior to surge; Figure 2 and Figure 3				
		t = 10 ms		-	120	Α
		t = 8.3 ms		-	132	Α
I ² t	I ² t for fusing	t = 10 ms		-	72	A ² s
dl _T /dt	repetitive rate of rise of on-state current after triggering	I_{TM} = 20 A; I_G = 50 mA; dI_G/dt 50 mA/ μ s		-	50	A/μs
I _{GM}	peak gate current			-	2	Α
V_{RGM}	peak reverse gate voltage			-	5	V
P _{GM}	peak gate power			-	5	W
P _{G(AV)}	average gate power	over any 20 ms period		-	0.5	W
T _{stg}	storage temperature			-40	+150	°C
T _j	junction temperature			-	125	°C

^[1] Although not recommended, off-state voltages up to 800 V may be applied without damage, but the thyristor may switch to the on-state. The rate of rise of current should not exceed 15 A/µs.

2 of 12

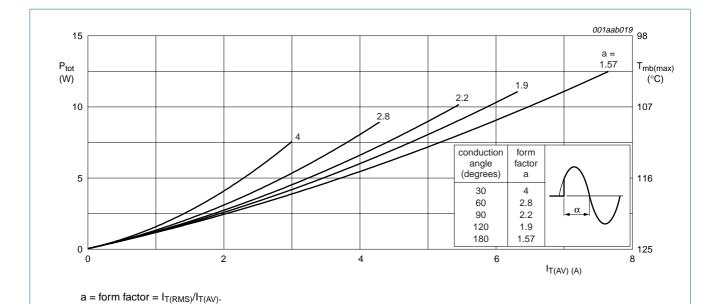


Fig 1. Total power dissipation as a function of average on-state current; maximum values.

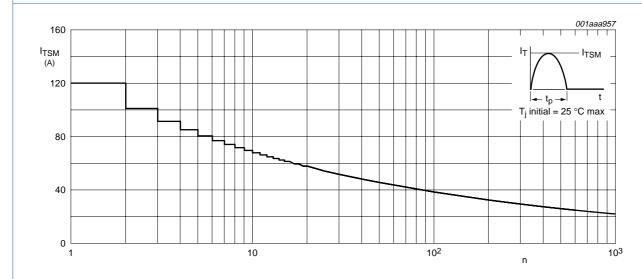


Fig 2. Non-repetitive peak on-state current as a function of the number of sinusoidal current cycles; maximum values.

f = 50 Hz.

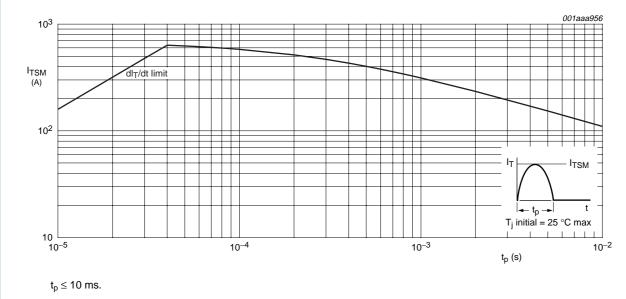


Fig 3. Non-repetitive peak on-state current as a function of pulse width; maximum values.

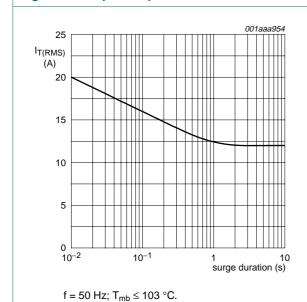


Fig 4. RMS on-state current as a function of surge duration; maximum values.

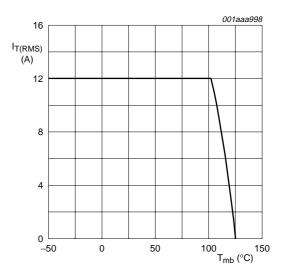


Fig 5. RMS on-state current as a function of mounting base temperature; maximum values.

5. Thermal characteristics

Table 4: Thermal characteristics

Symbol	Parameter	Conditions	Тур	Max	Unit
$R_{th(j-mb)}$	thermal resistance from junction to mounting base	Figure 6	-	1.8	K/W
R _{th(j-a)}	thermal resistance from junction to ambient	mounted on an FR4 printed-circuit board; see <u>Figure 14</u>	75	-	K/W

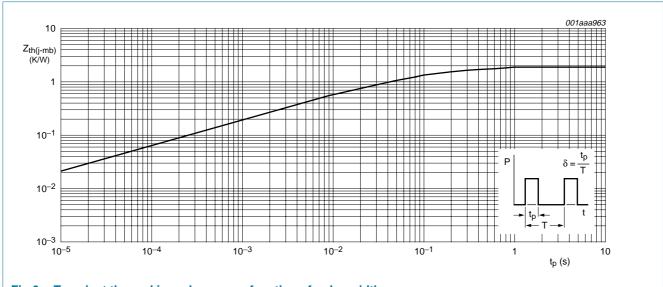


Fig 6. Transient thermal impedance as a function of pulse width.

6. Characteristics

Table 5: Characteristics

 $T_i = 25 \,^{\circ}C$ unless otherwise stated

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Static cha	racteristics					
I _{GT}	gate trigger current	V _D = 12 V; I _T = 0.1 A; <u>Figure 8</u>	-	2	15	mA
lμ	latching current	V _D = 12 V; I _{GT} = 0.1 A; <u>Figure 10</u>	-	10	40	mA
I _H	holding current	V _D = 12 V; I _{GT} = 0.1 A; <u>Figure 11</u>	-	7	20	mA
V _T	on-state voltage	I _T = 23 A; <u>Figure 9</u>	-	1.4	1.75	V
V _{GT}	gate trigger voltage	V _D = 12 V; I _T = 0.1 A; <u>Figure 7</u>	-	0.6	1.5	V
		$V_D = V_{DRM(max)}; I_T = 0.1 A;$ $T_j = 125 ^{\circ}C$	0.25	0.4	-	V
I _D , I _R	off-state leakage current	$V_D = V_{DRM(max)}$; $V_R = V_{RRM(max)}$; $T_j = 125 ^{\circ}C$	-	0.1	0.5	mA
Dynamic c	haracteristics					
dV _D /dt	critical rate of rise of off-state voltage	$V_{DM} = 67\% \ V_{DRM(max)}; T_j = 125 \ ^{\circ}C;$ exponential waveform; Figure 12				
		gate open circuit	50	130	-	V/µs
		R _{GK} = 100 Ω	200	1000	-	V/µs
t _{gt}	gate controlled turn-on time	$I_{TM} = 40 \text{ A}; V_D = V_{DRM(max)};$ $I_G = 0.1 \text{ A}; dI_G/dt = 5 \text{ A/}\mu\text{s}$	-	2	-	μs
t _q	circuit commuted turn-on time	$V_D = 67\% \ V_{DRM(max)}; \ T_j = 125 \ ^{\circ}C; \ I_{TM} = 20 \ A; \ V_R = 25 \ V; \ dI_{TM}/dt = 30 \ A/\mu s; \ dV_D/dt = 50 \ V/\mu s; \ R_{GK} = 100 \ \Omega$	-	70	-	μs

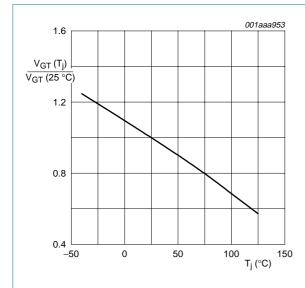


Fig 7. Normalized gate trigger voltage as a function of junction temperature.

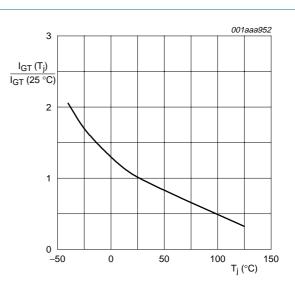
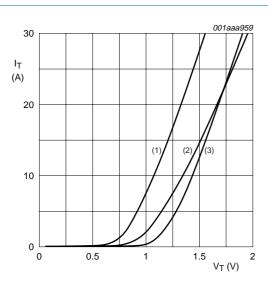



Fig 8. Normalized gate trigger current as a function of junction temperature.

 $V_0 = 1.06 \text{ V}.$

 $R_S = 0.0304 \ \Omega.$

- (1) $T_i = 125$ °C; typical values.
- (2) $T_i = 125 \,^{\circ}C$; maximum values.
- (3) $T_j = 25$ °C; maximum values.

Fig 9. On-state current characteristics.

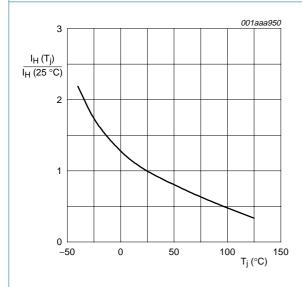


Fig 11. Normalized holding current as a function of junction temperature.

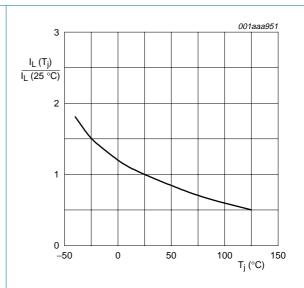
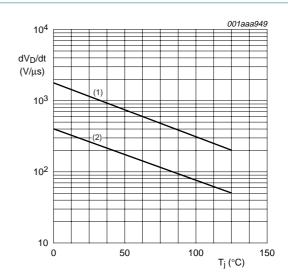



Fig 10. Normalized latching current as a function of junction temperature.

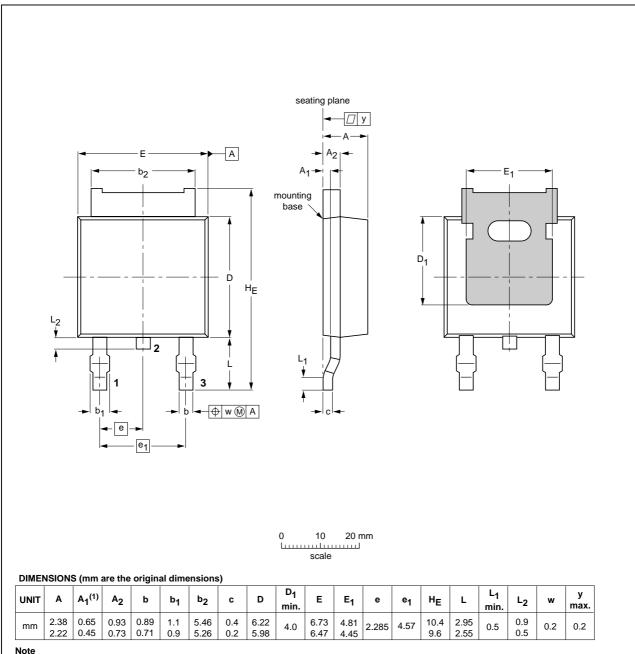
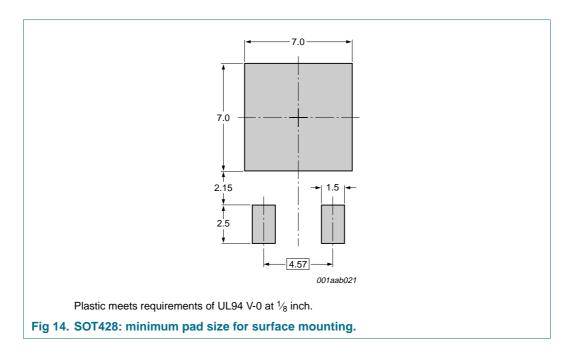

- (1) $R_{GK} = 100 \Omega$.
- (2) Gate open circuit.

Fig 12. Critical rate of rise of off-state voltage as a function of junction temperature; minimum values.

Package outline

Plastic single-ended surface mounted package (Philips version of D-PAK); 3 leads (one lead cropped)

SOT428


1. Measured from heatsink back to lead.

OUTLINE		REFER	ENCES	EUROPEAN	ISSUE DATE
VERSION	IEC	JEDEC	JEITA	PROJECTION	ISSUE DATE
SOT428		TO-252	SC-63		99-09-13 01-12-11

Fig 13. Package outline.

9397 750 13161

8. Mounting

9. Revision history

Table 6: Revision history

Document ID	Release date	Data sheet status	Change notice	Order number	Supersedes
BT151S_SERIES_4	20040609	Product specification	-	9397 750 13161	BT151S_SERIES_3
Modifications:		t of this specification has on and information stand		omply with Philips	Semiconductors' new
BT151S_SERIES_3	20020101	Product specification	-	-	BT151S_SERIES_2
BT151S_SERIES_2	19990601	Product specification	-	-	BT151S_SERIES_1
BT151S_SERIES_1	19970901	Product specification	-	-	-

Level	Data sheet status [1]	Product status [2] [3]	Definition
I	Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
II	Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
III	Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN).

- [1] Please consult the most recently issued data sheet before initiating or completing a design.
- [2] The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.
- [3] For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.

11. Definitions

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

12. Disclaimers

Life support — These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

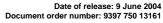
Right to make changes — Philips Semiconductors reserves the right to make changes in the products - including circuits, standard cells, and/or software - described or contained herein in order to improve design and/or performance. When the product is in full production (status 'Production'), relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

13. Contact information

For additional information, please visit: http://www.semiconductors.philips.com
For sales office addresses, send an email to: sales.addresses@www.semiconductors.philips.com

Philips Semiconductors

BT151S series


Thyristors

14. Contents

1	Product profile
1.1	General description
1.2	Features
1.3	Applications 1
1.4	Quick reference data1
2	Pinning information
3	Ordering information
4	Limiting values
5	Thermal characteristics
6	Characteristics6
7	Package outline 8
8	Mounting
9	Revision history
10	Data sheet status
11	Definitions 11
12	Disclaimers11
12	Contact information 11

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

