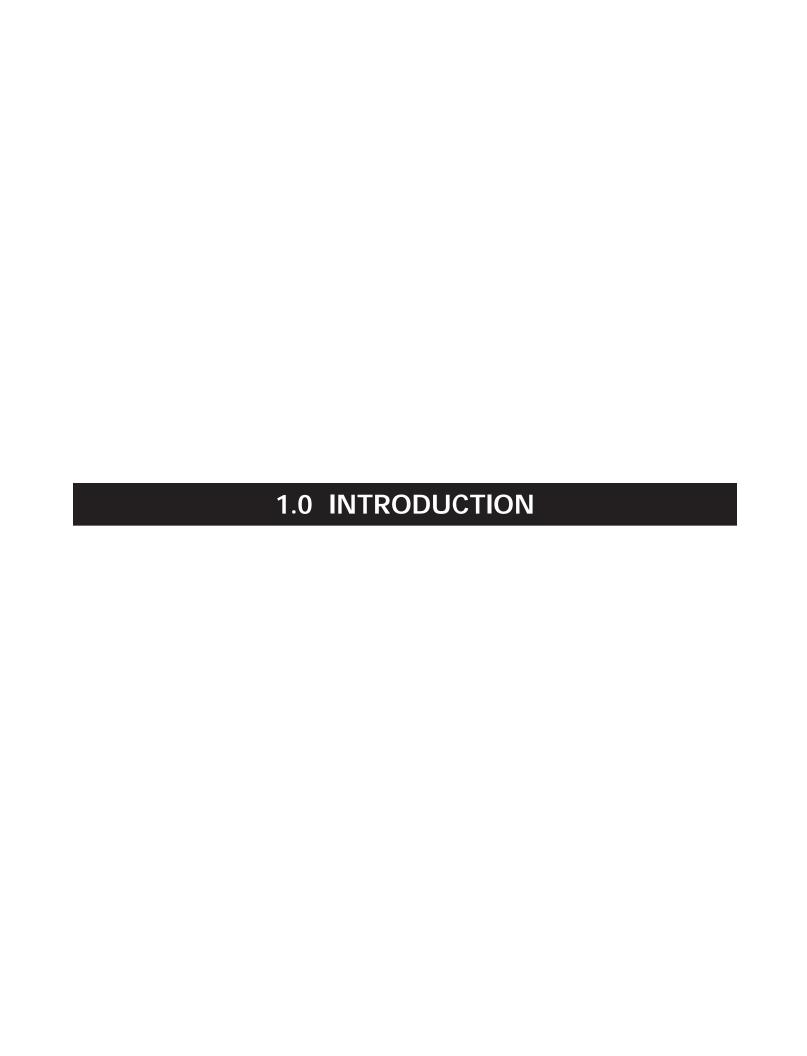

LMV921

QUALIFICATION PACKAGE

WORLD'S SMALLEST 1.8V RR I/O OP AMP

- CMVR 300 MV BEYOND RAILS
- RR OUTPUT SWING WITHIN 30 mV @ 2K LOAD
- SC-70 AND SOT PACKAGING
- LMV321 PIN-COMPATIBLE



LMV921 QUALIFICATION PACKAGE

Summer 1999

Table of Contents

1.0 Introduction
1.1 General Product Description1-1
1.2 Technical Product Description
1.3 Reliability/Qualification Overview1-1
1.4 Technical Assistance1-1
2.0 Device Information
2.1 Datasheet
2.2 Die Photo
3.0 Process Information
3.1 Process Flows
3.2 Process Details
3.3 Masking Sequence
4.0 Packaging Information
4.1 Package Material4-1
4.2 Bonding Diagrams
4.2.1 SC-704-2
4.2.2 SOT23-5 4-3
5.0 Reliability Data
5.1 Reliability Report

1.1 General Product Description

This qualification booklet covers a general purpose Op Amp. It is available in 2 different packages.

LMV921IM5/IM5X (5 lead SOT-23 package) Single Op Amp LMV921IM7/IM7X (5 lead SC-70 package)

1.2 Technical Product Description

The LMV921 is manufactured using National's advanced Submicron Silicon Gate BiCMOS process. Internal name for this process is CS80CBi, which uses 6-inch wafers.

1.3 Reliability/Qualification Overview

Copies of all reliability test reports listed below can be found under Reliability Reports section 5.0 later in this qualification booklet.

1.4 Technical Assistance

Americas Japan

Tel: 1-800-272-9959 Tel: 81-3-5639-7560 Fax: 1-800-737-7018 Fax: 81-3-5639-7507 Email: support@nsc.com

Asia Pacific Europe Fax: 65-2504466

Fax: +49 (0) 1 80 5 30 85 86 Email: sea.support@nsc.com Email: europe.support@nsc.com Tel: 65-2544466

Deutsch Tel: +49 (0) 1 80 5 30 85 85 (IDD telephone charge to be paid by caller) English Tel: +49 (0) 1 80 5 32 78 32

See us on the Worldwide Web @ http://www.national.com

LMV921 Qualification Package 1-1

LMV921 1.8V, 1MHz, Low Power Operational Amplifier with Rail-To-Rail Input and Output in SC70-5 package

2.1 Datasheet

April 1999

LMV921

1.8V, 1MHz, Low Power Operational Amplifier with Rail-To-Rail Input and Output in SC70-5 package

General Description

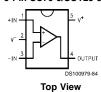
The LMV921 is guaranteed to operate from +1.8V to +5.0V supply voltages and has rail-to-rail input and output. This rail-to-rail operation enables the user to make full use of the entire supply voltage range. The input common mode voltage range extends 300mV beyond the supplies and the output can swing rail-to-rail unloaded and within 100mV from the rail with 600Ω load at 1.8V supply. The LMV921 is optimized to work at 1.8V which makes it ideal for portable two-cell battery-powered systems and single cell Li-lon sys-

The LMV921 exhibits excellent speed-power ratio, achieving 1 MHz gain bandwidth product at 1.8V supply voltage with very low supply current. The LMV921 is capable of driving 600Ω load and up to 1000pF capacitive load with minimal ringing. The LMV921's high DC gain of 100dB makes it suitable for low frequency applications.

The LMV921 is offered in a space saving SC70-5 and SOT23-5 packages. The SC70-5 package is only 2.0X2.1X1.0mm. These small packages are ideal solutions for area constrained PC boards and portable electronics such as cellphones and PDAs.

Features

(Typical 1.8V Supply Values; Unless Otherwise Noted)


- Guaranteed 1.8V, 2.7V and 5V specifications
- Rail-to-Rail Input & Output Swing
 - 100 mV from rail — w/600 Q Load — w/2k Ω Load 30 mV from rail
- \blacksquare V_{CM} 300mV beyond rails
- Ultra Tiny, SC70-5 package
- 90dB gain w/600Ω load
- Supply Current 145µA ■ Gain Bandwidth Product 1MHz 6mV
- Maximum V_{OS}

Applications

- Cordless/Cellular Phones ■ Laptops
- PDAs
- PCMCIA
- Portable/Battery-Powered Electronic Equipment
- Supply Current Monitoring
- Battery Monitoring

Connection Diagram

5-Pin SC70-5/SOT23-5

Ordering Information

Package	Temperature Range Industrial -40°C to +85°C	Packaging Marking	Transport Media	NSC Drawing
5-Pin SC70-5	LMV921M7	A21	250 Units Tape and Reel	MAA05A
	LMV921M7X	A21	3k Units Tape and Reel	
5-Pin SOT23-5	LMV921M5	A29A	250 Units Tape and Reel	MA05B
	LMV921M5X	A29A	3k Units Tape and Reel	

© 1999 National Semiconductor Corporation

DS100979

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

ESD Tolerance (Note 2)

Machine Model 100V Human Body Model 2000V

Differential Input Voltage ± Supply Voltage Supply Voltage (V⁺–V ⁻) 5.5V

Supply Voltage (V⁺–V ⁻)
Output Short Circuit to V⁺ (Note 3)

Output Short Circuit to V⁻ (Note 3)

Storage Temperature Range -65°C to 150°C

Junction Temperature (Note 4)

Mounting Temp.

Lead Temp. (Soldering, 10 sec) 260°C Infrared (10 sec) 215°C

Operating Ratings (Note 1)

Supply Voltage 1.5V to 5.0V Temperature Range $-40^{\circ}\text{C} \leq \text{T}_{\text{J}} \leq 85^{\circ}\text{C}$

Thermal Resistance (θ_{JA})

Ultra Tiny SC70-5 Package 440 °C/W

5-Pin Surface Mount

Tiny SOT23-5 Package 265 °C/W

5-Pin Surface Mount

1.8V DC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for T_J = 25°C. V^+ = 1.8V, V^- = 0V, V_{CM} = $V^+/2$, V_O = $V^+/2$ and R_L > 1 M Ω . **Boldface** limits apply at the temperature extremes.

150°C

Symbol	Parameter	Condition	Typ (Note 5)	Limits (Note 6)	Units
V _{OS}	Input Offset Voltage		-1.8	6 8	mV max
TCV _{OS}	Input Offset Voltage Average Drift		1		μV/°C
I _B	Input Bias Current		12	35 50	nA max
I _{os}	Input Offset Current		2	25 40	nA max
Is	Supply Current		145	185 205	μA max
CMMR	Common Mode Rejection Ratio	$0 \le V_{CM} \le 0.6V$	82	62 60	dB
		$-0.2V \le V_{CM} \le 0V$ $1.8V \le V_{CM} \le 2.0V$	74	50	min
PSRR	Power Supply Rejection Ratio	$1.8V \le V^{+} \le 5V$, $V_{CM} = 0.5V$	78	67 62	dB min
V_{CM}	Input Common-Mode Voltage Range	For CMRR ≥ 50dB	-0.3	-0.2 0	V min
			2.15	2.0 1.8	V max
A _V	Large Signal Voltage Gain	$R_L = 600\Omega$ to 0.9V, $V_O = 0.2V$ to 1.6V, $V_{CM} = 0.5V$	91	77 73	dB min
		$R_L = 2k\Omega$ to 0.9V, $V_O = 0.2V$ to 1.6V, $V_{CM} = 0.5V$	95	80 75	dB min
V _O	Output Swing	$R_{L} = 600\Omega \text{ to } 0.9V$ $V_{IN} = \pm 100\text{mV}$	1.7	1.68 1.66	V min
			0.075	0.090 0.105	V max
		$R_L = 2k\Omega$ to 0.9V $V_{IN} = \pm 100$ mV	1.77	1.76 1.75	V min
			0.025	0.035 0.040	V max
Io	Output Short Circuit Current	Sourcing, $V_O = 0V$ $V_{IN} = 100 \text{mV}$	6	4 3.3	mA min
		Sinking, $V_O = 1.8V$ $V_{IN} = -100 \text{mV}$	10	7 5	mA min

1.8V AC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_J = 25^{\circ}C$. $V^+ = 1.8V$, $V^- = 0V$, $V_{CM} = V^+/2$, $V_O = V^+/2$ and $R_L > 1$ M Ω . **Boldface** limits apply at the temperature extremes.

Symbol	Parameter	Conditions	Typ (Note 5)	Units
SR	Slew Rate	(Note 7)	0.39	V/µs
GBW	Gain-Bandwidth Product		1	MHz
Φ_{m}	Phase Margin		60	Deg.
G _m	Gain Margin		10	dB
e _n	Input-Referred Voltage Noise	f = 1 kHz, V _{CM} = 0.5V	45	<u>nV</u> 1√Hz
i _n	Input-Referred Current Noise	f = 1 kHz	0.1	pA √Hz
THD	Total Harmonic Distortion	f = 1kHz, A _V = +1		
		$R_L = 600k\Omega$, $V_{IN} = 1 V_{PP}$	0.089	%

2.7V DC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for T_J = 25°C. V^+ = 2.7V, V^- = 0V, V_{CM} = V+/2, V_O = V+/2 and R_L > 1 M Ω . **Boldface** limits apply at the temperature extremes.

Symbol	Parameter	Condition	Typ (Note 5)	Limits (Note 6)	Units
Vos	Input Offset Voltage		-1.6	6	mV
				8	max
TCV _{os}	Input Offset Voltage Average Drift		1		μV/°C
l _B	Input Bias Current		12	35 50	nA max
los	Input Offset Current		2	25 40	nA max
Is	Supply Current		147	190 210	uA max
CMRR	Common Mode Rejection Ratio	$0V \le V_{CM} \le 1.5V$	84	62 60	dB
		$-0.2V \le V_{CM} \le 0V$ 2.7V \le V_{CM} < 2.9V	73	50	min
PSRR	Power Supply Rejection Ratio	$1.8V \le V^{+} \le 5V$, $V_{CM} = 0.5V$	78	67 62	dB min
V _{CM}	Input Common-Mode Voltage Range	For CMRR ≥ 50dB	-0.3	-0.2 0	V min
			3.050	2.9 2.7	V max
A _V	Large Signal Voltage Gain	$R_L = 600\Omega$ to 1.35V, $V_O = 0.2V$ to 2.5V	98	80 75	dB min
		$R_L = 2k\Omega \text{ to } 1.35V,$ $V_O = 0.2V \text{ to } 2.5V$	103	83 77	dB min
Vo	Output Swing	$R_L = 600\Omega \text{ to } 1.35V$ $V_{IN} = \pm 100\text{mV}$	2.62	2.6 2.580	V min
			0.075	0.095 0.115	V max
		$R_L = 2k\Omega$ to 1.35V $V_{IN} = \pm 100$ mV	2.675	2.660 2.650	V min
			0.025	0.040 0.045	V max

2.7V DC Electrical Characteristics (Continued)

Unless otherwise specified, all limits guaranteed for T_J = 25°C. V^+ = 2.7V, V^- = 0V, V_{CM} = $V^+/2$, V_O = $V^+/2$ and $R_L >$ 1 M Ω . **Boldface** limits apply at the temperature extremes.

Symbol	Parameter	Condition	Typ (Note 5)	Limits (Note 6)	Units
Io	Output Short Circuit Current	Sourcing, $V_O = 0V$ $V_{IN} = 100 \text{mV}$	27	20 15	mA min
		Sinking, $V_O = 2.7V$ $V_{IN} = -100 \text{mV}$	28	22 16	mA min

2.7V AC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for T_J = 25°C. V⁺ = 2.7V, V ⁻ = 0V, V_{CM} = 1.0V, V_O = 1.35V and R_L > 1 M Ω . **Boldface** limits apply at the temperature extremes.

Symbol	Parameter	Conditions	Typ (Note 5)	Units
SR	Slew Rate	(Note 7)	0.41	V/µs
GBW	Gain-Bandwidth Product		1	MHz
Φ_{m}	Phase Margin		65	Deg.
G _m	Gain Margin		10	dB
e _n	Input-Referred Voltage Noise	f = 1 kHz, V _{CM} = 0.5V	45	<u>nV</u> √Hz
i _n	Input-Referred Current Noise	f = 1 kHz	0.1	pA 1√Hz
THD	Total Harmonic Distortion	$f = 1 \text{ kHz}, A_V = +1$ $R_L = 600 \text{k}\Omega, V_{\text{IN}} = 1 V_{\text{PP}}$	0.077	%

5V DC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for T_J = 25°C. V⁺ = 5V, V ⁻ = 0V, V_{CM} = V⁺/2, V_O = V⁺/2 and R_L > 1 M Ω .Boldface limits apply at the temperature extremes.

Symbol	Parameter	Condition	Typ (Note 5)	Limits (Note 6)	Units
Vos	Input Offset Voltage		-1.5	6	mV
				8	max
TCV _{os}	Input Offset Voltage Average Drift		1		μV/°C
I _B	Input Bias Current		12	35	nA
				50	max
I _{os}	Input Offset Current		2	25	nA
				40	max
Is	Supply Current		160	210	uA
				230	max
CMRR	Common Mode Rejection Ratio	0V ≤ V _{CM} ≤ 3.8V	86	62	
				61	dB
		-0.2V ≤ V _{CM} ≤ 0V	72	50	min
		5.0V ≤ V _{CM} ≤ 5.2V			
PSRR	Power Supply Rejection Ratio	1.8V ≤ V ⁺ ≤ 5V	78	67	dB
		V _{CM} = 0.5V		62	min
V _{CM}	Input Common-Mode Voltage	For CMRR ≥ 50dB	-0.3	-0.2	V
	Range			0	min
			5.350	5.2	V
				5.0	max
A _V	Voltage Gain	$R_L = 600\Omega$ to 2.5V	104	86	dB
	_	$V_{\rm O} = 0.2 \text{V to } 4.8 \text{V}$		82	min
		$R_L = 2k\Omega$ to 2.5V	108	89	dB
		$V_{O} = 0.2V \text{ to } 4.8V$		85	min

5V DC Electrical Characteristics (Continued)

Unless otherwise specified, all limits guaranteed for T_J = 25°C. V^+ = 5V, V^- = 0V, V_{CM} = $V^+/2$, V_O = $V^+/2$ and R_L > 1 M Ω .Boldface limits apply at the temperature extremes.

Symbol	Parameter	Condition	Typ (Note 5)	Limits (Note 6)	Units
Vo	Output Swing	$R_L = 600\Omega$ to 2.5V	4.895	4.865	V
		$V_{IN} = \pm 100 \text{mV}$		4.840	min
			0.1	0.125	V
				0.150	max
		$R_L = 2k\Omega$ to 2.5V	4.965	4.945	V
		$V_{IN} = \pm 100 \text{mV}$		4.935	min
			0.035	0.055	V
				0.065	max
Io	Output Short Circuit Current	Sourcing, V _O = 0V	98	85	mA
		$V_{IN} = 100 \text{mV}$		68	min
		Sinking, V _O = 5V	75	65	mA
		$V_{IN} = -100 \text{mV}$		45	min

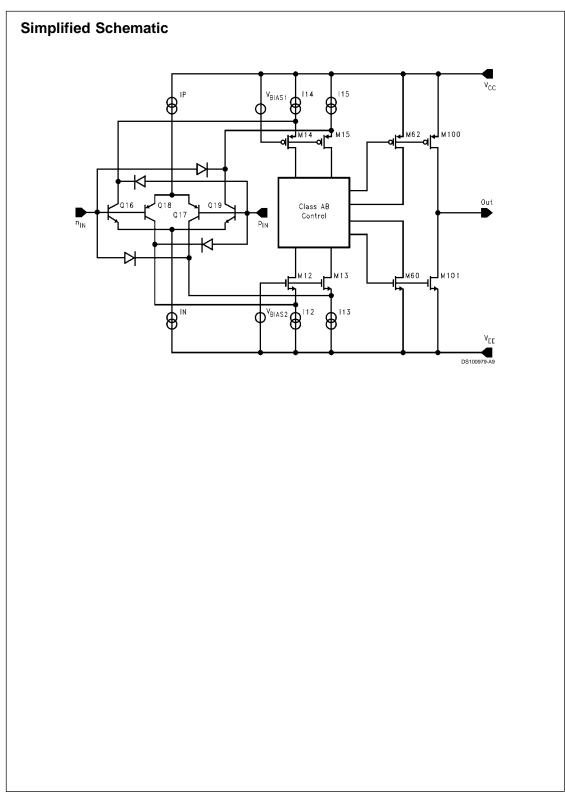
5V AC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for T_J = 25°C. V^+ = 5V, V^- = 0V, V_{CM} = $V^+/2$, V_O = 2.5V and R_L > 1 $M\Omega$. **Boldface** limits apply at the temperature extremes.

Symbol	Parameter	Conditions	Typ (Note 5)	Units
SR	Slew Rate	(Note 7)	0.45	V/µs
GBW	Gain-Bandwidth Product		1	MHz
Φ_{m}	Phase Margin		70	Deg.
G _m	Gain Margin		15	dB
e _n	Input-Referred Voltage Noise	f = 1 kHz, V _{CM} = 1V	45	<u>nV</u> √Hz
i _n	Input-Referred Current Noise	f = 1 kHz	0.1	pA 1√Hz
THD	Total Harmonic Distortion	$f = 1 \text{ kHz}, A_V = +1$ $R_L = 600\Omega, V_O = 1 V_{PP}$	0.069	%

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test conditions, see the Electrical Characteristics.

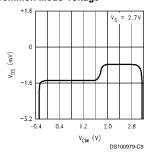
Note 2: Human body model, 1.5 k Ω in series with 100 pF. Machine model, 200Ω in series with 100 pF.

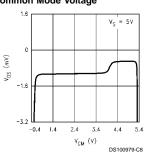

Note 3: Applies to both single-supply and split-supply operation. Continuous short circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of 150°C. Output currents in excess of 45 mA over long term may adversely affect reliability.

Note 4: The maximum power dissipation is a function of $T_{J(max)}$, θ_{JA} , and T_A . The maximum allowable power dissipation at any ambient temperature is $P_D = (T_{J(max)} - T_A)/\theta_{JA}$. All numbers apply for packages soldered directly into a PC board.

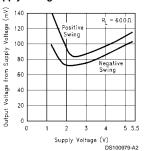
Note 5: Typical Values represent the most likely parametric norm.

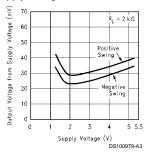
Note 6: All limits are guaranteed by testing or statistical analysis.

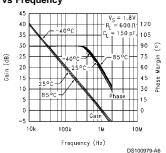

Note 7: V+ = 5V. Connected as voltage follower with 5V step input. Number specified is the slower of the positive and negative slew rates.

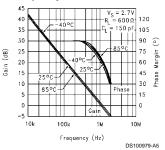

Typical Performance Characteristics Unless otherwise specified, $V_S = +5V$, single supply, $T_A = 25$ °C. Supply Current vs Input Bias Current Sourcing Current vs Supply Voltage vs V_{CM} Output Voltage 210 20 V_S = 5V v_S = 1.8v 180 15 150 (mA) Supply Current 120 (nA) T = -40°0 90 BIAS 0. 60 0.0 0.001 3 -2.5-2.0-1.5-1.0-0.5 0 0.5 1.0 1.5 2.0 2.5 0.001 0.01 Supply Voltage (V)
DS100979-A1 V_{CM} (V)Output Voltage Referenced to V+ (V) DS100979-B3 Sourcing Current vs Sourcing Current vs Sinking Current vs **Output Voltage Output Voltage** Output Voltage 100 1000 100 $V_{S} = 2.7V$ V_S = 5V v_S = 1.8v 100 SOURCE (mA) (mA) 10 (mA) SINK 0.01 0.001 0.01 0.1 0.01 0.1 Output Voltage Referenced to V+ (V)
DS100979-B8 Output Voltage Referenced to V+ (V) Output Voltage Referenced to GND (V) DS100979-B4 DS100979-B2 Sinking Current vs Sinking Current vs Offset Voltage vs **Output Voltage** Output Voltage Common Mode Voltage 100 100 V_S = 1.8V v_s = 5v 10 +1.6 (mA) (mA) (mV) SINK Vos 0.0 0.001 -3.2 0.01 10 0.01 0.1 -0.4 0 +0.4 +0.8 +1.2 +1.6 +2.0 +2.4 Output Voltage Referenced to GND (V)
DS100979-B7 Output Voltage Referenced to GND (V)
DS100979-B1 V_{CM} (V) DS100979-D1

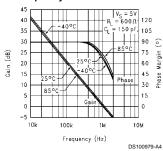
Typical Performance Characteristics Unless otherwise specified, $V_S = +5V$, single supply, $T_A = 25^{\circ}C$. (Continued)

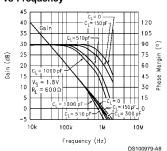

Offset Voltage vs Common Mode Voltage

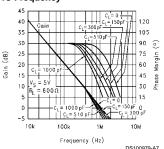

Offset Voltage vs Common Mode Voltage


Output Voltage Swing vs Supply Voltage

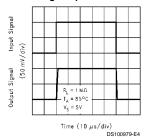

Output Voltage Swing vs Supply Voltage

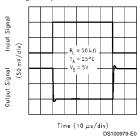

Gain and Phase Margin vs Frequency


Gain and Phase Margin vs Frequency

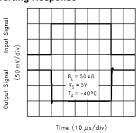

Gain and Phase Margin vs Frequency

Gain and Phase Margin vs Frequency


Gain and Phase Margin vs Frequency

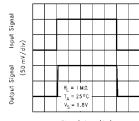

Typical Performance Characteristics Unless otherwise specified, V_S = +5V, single supply, $T_A = 25$ °C. (Continued) CMRR vs PSRR vs Input Voltage Noise vs Frequency Frequency Frequency 105 Voltage Noise (nV (RMS)/√Hz) 700 100 600 CMRR (dB) 500 PSRR (dB) 400 300 200 20 100 60 100 100 Frequency (Hz)
DS100979-C7 1000 10000 100000 100 Frequency (Hz) Frequency (Hz) DS100979-C6 DS100979-F4 Input Current Noise vs THD vs THD vs Frequency Frequency Frequency Input Current Noise (pA) THD (%) 0.01 0.001 10 100 1000 10000 100000 10 Frequency (Hz) Frequency (Hz) DS100979-F5 DS100979-D4 DS100979-D3 Slew Rate vs Small Signal Small Signal Supply Voltage Non-Inverting Response Non-Inverting Response 0.5 Input Signal Input Signal Slew Rate (V/µs) Output Signal Inpu (50 mV/div) Output Signal Inpu (50 mV/div) Rising Edge Time (10 μs/div)
DS100979-E3 Time (10 μs/div) DS100979-E2 Supply Voltage (V)
DS100979-99

Typical Performance Characteristics Unless otherwise specified, $V_S = +5V$, single supply, $T_A = 25$ °C. (Continued)


Small Signal Non-Inverting Response

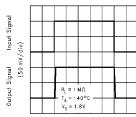
Small Signal Inverting Response

Small Signal Inverting Response

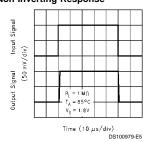


Time (10 $\mu s/div$) DS100979-D9

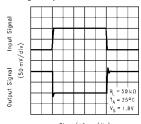
Small Signal Inverting Response



Small Signal **Non-Inverting Response**

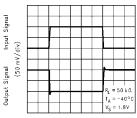

Time (10 μs/div) DS100979-E6

Small Signal Non-Inverting Response



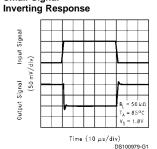
Time (10 μs/div)
DS100979-E7

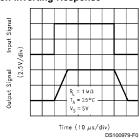
Small Signal Non-Inverting Response


Small Signal Inverting Response

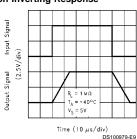
10

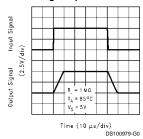
Time (10 $\mu s/div$) DS100979-G3

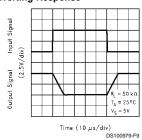

Small Signal Inverting Response

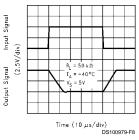

Time (10 μ s/div) DS100979-G2

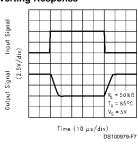
Typical Performance Characteristics Unless otherwise specified, V_S = +5V, single supply, $T_A = 25$ °C. (Continued)

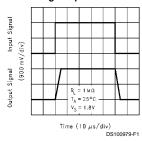

Small Signal

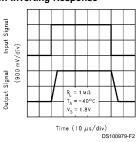

*Large Signal Non-Inverting Response


*Large Signal Non-Inverting Response

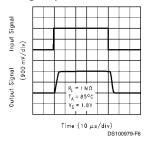

*Large Signal Non-Inverting Response

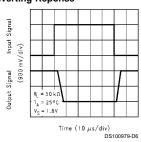

*Large Signal **Inverting Response**


*Large Signal Inverting Response

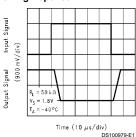

*Large Signal Inverting Response

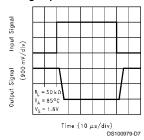
*Large Signal Non-Inverting Response

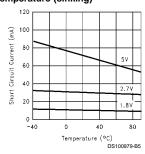

*Large Signal Non-Inverting Response

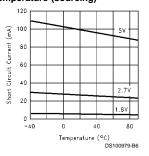

^{*}For large signal pulse response in the unity gain follower configuration, the input is 5mV below the positive rail and 5mV above the negative rail at $25^{\circ}C$ and $85^{\circ}C$. At $-40^{\circ}C$, input is 10mV below the positive rail and 10mV above the negative rail.

Typical Performance Characteristics Unless otherwise specified, $V_S = +5V$, single supply, $T_A = 25$ °C. (Continued)


*Large Signal Inverting Response


*Large Signal **Inverting Reponse**


*Large Signal Inverting Reponse


*Large Signal Inverting Reponse

Short Circuit Current vs Temperature (sinking)

Short Circuit Current vs Temperature (sourcing)

*For large signal pulse response in the unity gain follower configuration, the input is 5mV below the positive rail and 5mV above the negative rail at 25°C and 85°C. At -40°C, input is 10mV below the positive rail and 10mV above the negative rail.

12

Application Note

1.0 Unity Gain Pulse Response Considerations

The unity-gain follower is the most sensitive configuration to capacitive loading. The LMV921 can directly drive 1nF in a unity-gain with minimal ringing. Direct capacitive loading reduces the phase margin of the amplifier. The combination of the amplifier's output impedance and the capacitive load induces phase lag. This results in either an underdamped pulse response or oscillation. The pulse response can be improved by adding a pull up resistor as shown in Figure 1

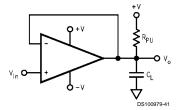


FIGURE 1. Using a Pull-Up Resistor at the Output for Stabilizing Capacitive Loads

Higher capacitances can be driven by decreasing the value of the pull-up resistor, but its value shouldn't be reduced beyond the sinking capability of the part. An alternate approach is to use an isolation resistor as illustrated in Figure 2.

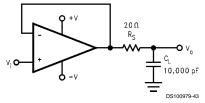


FIGURE 2. Using an Isolation Resistor to Drive Heavy Capacitive Loads

2.0 Input Bias Current Consideration

The LMV921 has a bipolar input stage. The typical input bias current (IB) is 12nA. The input bias current can develop a significant offset voltage. This offset is primarily due to I_B flowing through the negative feedback resistor, R_{F} . For example, if I_B is 50nA (max room) and R_F is 100k $\!\Omega\!$, then an offset voltage of 5mV will develop (VOS = IBX RF). Using a compensation resistor (R_C), as shown in Figure 3, cancels this affect. But the input offset current (IOS) will still contribute to an offset voltage in the same manner.

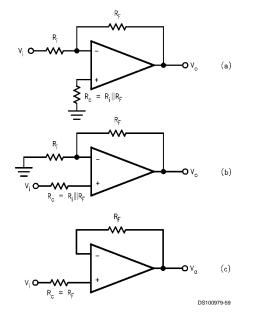


FIGURE 3. Canceling the Voltage Offset Effect of Input **Bias Current**

3.0 Operating Supply Voltage

The LMV921 is guaranteed to operate from 1.8V to 5.0V. The LMV921 will begin to function at power voltages as low as 1.2V at room temperature when unloaded. Start up voltage increases to 1.5V when the amplifier is fully loaded $(600\Omega$ to mid-supply). Below 1.2V the output voltage is not guaranteed to follow the input. Figure 4 below shows the output voltage vs. supply voltage with the LMV921 configured as a voltage follower at room temperature.

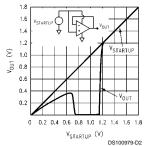


FIGURE 4.

4.0 Input and Output Stage

The rail-to-rail input stage of LMV921 provides more flexibility for the designer. The LMV921 uses a complimentary PNP and NPN input stage in which the PNP stage senses common mode voltage near V⁻ and the NPN stage senses common mode voltage near V+. The transition from the PNP stage to NPN stage occurs 1V below V+. Since both input stages have their own offset voltage, the offset of the amplifier becomes a function of the input common mode voltage and has a crossover point at 1V below V+ as shown in the V_{OS} vs. V_{CM} curves.

Application Note (Continued)

This $V_{\rm OS}$ crossover point can create problems for both DC and AC coupled signals if proper care is not taken. For large input signals that include the $V_{\rm OS}$ crossover point in their dynamic range, this will cause distortion in the output signal. One way to avoid such distortion is to keep the signal away from the crossover. For example, in a unity gain buffer configuration and with $V_{\rm S}=5$ V, a 5V peak-to-peak signal will contain input-crossover distortion while a 3V peak-to-peak signal centered at 1.5V will not contain input-crossover distortion as it avoids the crossover point. Another way to avoid large signal distortion is to use a gain of -1 circuit which avoids any voltage excursions at the input terminals of the amplifier. In that circuit, the common mode DC voltage can be set at a level away from the $V_{\rm OS}$ cross-over point.

For small signals, this transition in V_{OS} shows up as a V_{CM} dependent spurious signal in series with the input signal and can effectively degrade small signal parameters such as gain and common mode rejection ratio. To resolve this problem, the small signal should be placed such that it avoids the V_{OS} crossover point.

In addition to the rail-to-rail performance, the output stage can provide enough output current to drive 600Ω loads. Because of the high current capability, care should be taken not to exceed the 150 $^{\circ}$ C maximum junction temperature specification.

5.0 Power-Supply Considerations

The LMV921 is ideally suited for use with most battery-powered systems. The LMV921 operates from a single +1.8V to +5.0V supply and consumes about $145\mu A$ of

supply current. A high powersupply rejection ratio of 78dB allows the amplifier to be powered directly off a decaying battery voltage extending battery life.

Table 1 lists a variety of typical battery types. Batteries have different voltage ratings; operating voltage is the battery voltage under nominal load. End-of-Life voltage is defined as the voltage at which 100% of the usable power of the battery is consumed. Table 1 also shows the typical operating time of the LMV921.

6.0 Distortion

The two main contributors of distortion in LMV921 are:

- 1. Output crossover distortion occurs as the output transitions from sourcing current to sinking current.
- 2. Input crossover distortion occurs as the input switches from NPN to PNP transistor at the input stage.

To decrease crossover distortion:

- Increase the load resistance. This lowers the output crossover distortion but has no effect on the input crossover distortion.
- 2. Operate from a single supply with the output always sourcing current.
- 3. Limit the input voltage swing for large signals between ground and one volt below the positive supply.
- 4. Operate in inverting configuration to eliminate common mode induced distortion.
- 5. Avoid small input signal around the input crossover region. The discontinuity in the offset voltage will effect the gain, CMRR and PSRR.

TABLE 1. LMV921 Characteristics with Typical Battery Systems.

				• •
Battery Type	Operating Voltage (V)	End-of-Life Voltage (V)	Capacity AA Size (mA -	LMV921 Operating
		1090 (1)	h)	time (Hours)
Alkaline	1.5	0.9	1000	6802
Lithium	2.7	2.0	1000	6802
Ni - Cad	1.2	0.9	375	2551
NMH	1.2	1.0	500	3401

Typical Applications

1.0 Half-wave Rectifier with Rail-To-Ground Output Swing

Since the LMV921 input common mode range includes both positive and negative supply rails and the output can also swing to either supply, achieving half-wave rectifier functions in either direction is an easy task. All that is needed are two external resistors; there is no need for diodes or matched resistors. The half wave rectifier can have either positive or negative going outputs, depending on the way the circuit is

In Figure 5 the circuit is referenced to ground, while in Figure 6 the circuit is biased to the positive supply. These configurations implement the half wave rectifier since the LMV921 can not respond to one-half of the incoming waveform. It can not respond to one-half of the incoming because the amplifier can not swing the output beyond either rail therefore the output disengages during this half cycle. During the other half cycle, however, the amplifier achieves a half wave that can have a peak equal to the total supply voltage. $\boldsymbol{R}_{\boldsymbol{I}}$ should be large enough not to load the LMV921.

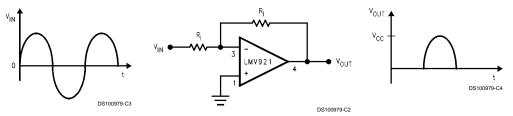


FIGURE 5. Half-Wave Rectifier with Rail-To-Ground Output Swing Referenced to Ground

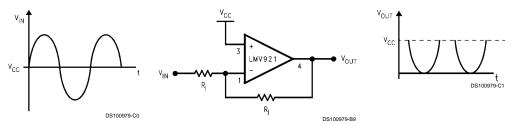


FIGURE 6. Half-Wave Rectifier with Negative-Going Output Referenced to V_{CC}

Typical Applications (Continued)

2.0 Instrumentation Amplifier with Rail-To-Rail Input and Output

Using three LMV921 Amplifiers, an instrumentation amplifier with rail-to-rail inputs and outputs can be made.

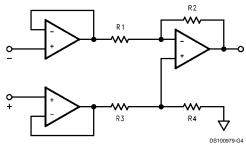
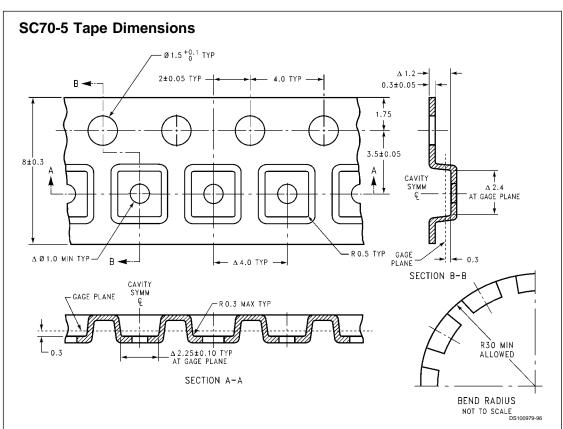
Some manufactures use a precision voltage divider array of 5 resistors to divide the common mode voltage to get a rail-to-rail input range. The problem with this method is that it also divides the signal, so in order to get unity gain, the amplifier must be run at high loop gains. This raises the noise and drift by the internal gain factor and lowers the input impedance. Any mismatch in these precision resistors reduces the CMRR as well. Using the LMV921 eliminates all of these problems.

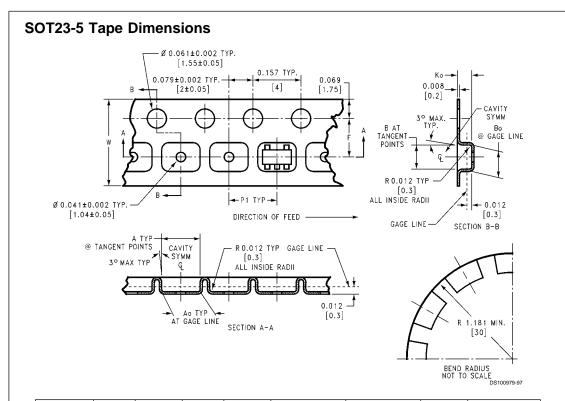
In this example, amplifiers A and B act as buffers to the differential stage. These buffers assure that the input imped-

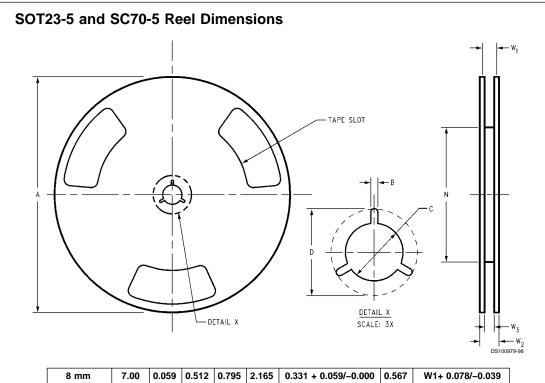
ance is very high and require no precision matched resistors in the input stage. They also assure that the difference amp is driven from a voltage source. This is necessary to maintain the CMRR set by the matching $\rm R_1\text{--}R_2$ with $\rm R_3\text{--}R_4$.

The gain is set by the ratio of $\rm R_2/R_1$ and $\rm R_3$ should equal $\rm R_1$ and $\rm R_4$ equal $\rm R_2.$

With both rail-to-rail input and output ranges, the input and output are only limited by the supply voltages. Remember that even with rail-to-rail outputs, the output can not swing past the supplies so the combined common mode voltages plus the signal should not be greater that the supplies or limiting will occur. For additional applications, see National Semiconductor application notes AN-29, AN-31, AN-71, and AN-127

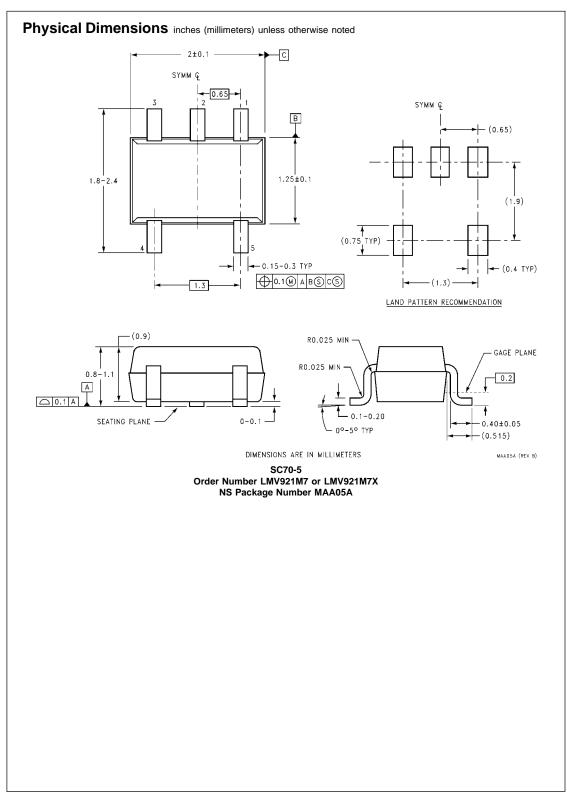



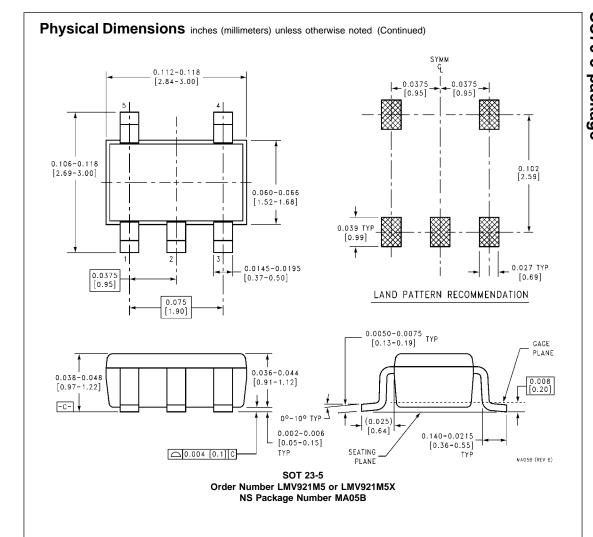

Figure 7. Rail-to-rail instumentation amplifier using three LMV921 amplifiers


SOT23-5 and SC70-5 Tape Format

Tape Format

Tape Section	# Cavities	Cavity Status	Cover Tape Status
Leader	0 (min)	Empty	Sealed
(Start End)	75 (min)	Empty	Sealed
Carrier	3000	Filled	Sealed
	250	Filled	Sealed
Trailer	125 (min)	Empty	Sealed
(Hub End)	0 (min)	Empty	Sealed


8 mm	0.130	0.124	0.130	0.126	0.138 ±0.002	0.055 ±0.004	0.157	0.315 ±0.012
	(3.3)	(3.15)	(3.3)	(3.2)	(3.5 ±0.05)	(1.4 ±0.11)	(4)	(8 ±0.3)
Tape Size	DIM A	DIM Ao	DIM B	DIM Bo	DIM F	DIM Ko	DIM P1	DIM W



 8 mm
 7.00
 0.059
 0.512
 0.795
 2.165
 0.331 + 0.059/-0.000
 0.567
 W1+ 0.078/-0.039

 330.00
 1.50
 13.00
 20.20
 55.00
 8.40 + 1.50/-0.00
 14.40
 W1 + 2.00/-1.00

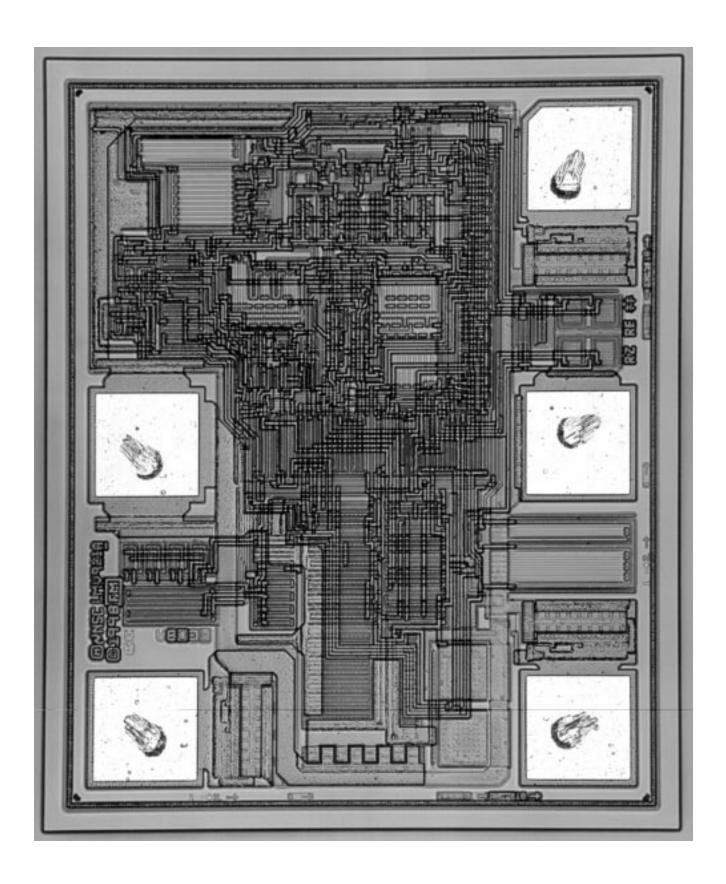
 Tape Size
 A
 B
 C
 D
 N
 W1
 W2
 W3

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.national.com


National Semiconductor Fax: +49 (0) 1 80-530 85 86

Fax: +49 (0) 1 80-530 85 86 Email: europe.support@nsc.com Deutsch Tel: +49 (0) 1 80-530 85 85 English Tel: +49 (0) 1 80-532 78 32 Français Tel: +49 (0) 1 80-532 93 58 Italiano Tel: +49 (0) 1 80-534 16 80

National Semiconducto Asia Pacific Customer Response Group Tel: 65-2544466 Fax: 65-2504466 Email: sea.support@nsc.com National Semiconductor Japan Ltd. Tel: 81-3-5639-7560 Fax: 81-3-5639-7507

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

2.2 Die Photo

3.1 Process Details

Fabrication Site: South Portland Fairchild

Process Technology: CS80CBI (Submicron Silicon Gate CMOS/Bipolar)

Minimum Feature Size: 0.8 microns

Wafer Diameter: 6 inches Number of Masks: 18

Metallization: 0.5% Copper, dual layer Aluminum metal

1st layer = 7,500 Å thick 2nd layer = 12,000 Å thick

Top Side Passivation: Over Nitride (11,500 Å thick)

Over Oxide (5,000 Å thick)

3.2 Process Detail & Masks

STAGE 1: Initial Ox

STAGE 2: Trench Define & Etch

STAGE 3: Mask 0.6, N-Iso STAGE 4: N-Iso Implant STAGE 5: N-Iso Drive

STAGE 6: N-Iso Ox Strip & Screen Ox STAGE 7: Mask 0.8, N+ Buried layer STAGE 8: N+ Buried Layer Implant STAGE 9: Mask 0.9,P+ Buried Layer STAGE 10: P+ Buried Layer Implant STAGE 11: **Buried Layer Anneal**

STAGE 12: Epi Growth

STAGE 13: Pad Oxide & Nitride STAGE 14: Mask 1.0, N-Well STAGE 15: N-Well Implant STAGE 16: Selective Oxide STAGE 17: N-Well Nitride Strip STAGE 18: P-Well implant

STAGE 19: Selective Oxide Etch

STAGE 20: N-Well & P-Well Drive-In Oxide

STAGE 21: Drive-In Oxide Strip STAGE 22: Mask 2.0, Composite

STAGE 23: Composite Pad Oxide & Composite Nitride

STAGE 24: Composite Mask Etch

STAGE 25: Mask 3.0, P-Field STAGE 26: P-Field Implant STAGE 27: Iso Field Oxide

STAGE 28: Active (Composite Area) Nitride Strip

STAGE 29: Pad Oxide Removal & Sacrificial Oxide Growth & Vt Adjust Implant

STAGE 30: Sacrificial Oxide Strip & Gate Oxide & Poly Deposition

3.2 Process Detail & Masks (cont)

STAGE 31: Poly Dope, Poly Anneal

STAGE 32: Mask 4.0, Poly

STAGE 33: Poly Etch

STAGE 34: Poly Seal Oxide STAGE 35: Mask 4.3, P-LDD STAGE 36: P-LDD Implant STAGE 37: Mask 4.5, N-LDD STAGE 38: N-LDD Implant

STAGE 39: Spacer Oxide Deposit & Etch

STAGE 40: Mask 5.0, N+ STAGE 41: N+ Implant STAGE 42: Mask 5.5, Base

STAGE 43: Base Etch & Base Implant

N+ Drive STAGE 44: STAGE 45: Mask 6.0, P+ STAGE 46: P+ Implant

STAGE 47: Dielectric Layer1 & P+ Anneal

SOG STAGE 48:

STAGE 49: Mask 7.0, Window

STAGE 50: Window Etch & Contact Dielectric

STAGE 51: Mask 7.1, Contact

STAGE 52: Contact Etch

STAGE 53: Contact Plug & Etchback

STAGE 54: Metal 1 Deposition STAGE 55: Mask 8.0, Metal 1 STAGE 56: Metal 1 Etch STAGE 57: Metal 1 Alloy Dielectric Layer2 STAGE 58:

STAGE 59: Mask 9.0, Via

STAGE 60: Via Etch

STAGE 61: Via Deposition & Metal 2 Deposit

STAGE 62: Mask 10.0, Metal 2

STAGE 63: Metal 2 Etch

Passivation Oxide/Nitride/Polyamide STAGE 64:

STAGE 65: Mask 13.0, Passivation

STAGE 66: Passivation Etch

3.3 Masking Sequence

•	•
Layer Title	Mask
0.6A	N-Iso
0.8A	N+ Buried Laye
0.9A	P+ Buried Layer
1.0A	N-Well
2.0A	Composite
3.0A	P-Field
3.5A	Cap Implant
4.0A	Poly
4.3A	P-LDD
4.5A	N-LDD
5.0A	N+
5.5 A	BASE
6.0A	P+
7.1A	Contact
8.0C	Metal 1
9.0C	Via
10.0B	Metal 2
13.0A	Passivation

4.1 Package Material

Generic Package Type 5 Lead SOT23 5 Lead SC-70

NS Package Number MA05B MAA005B

Package/Compound **Epoxy Cresol Novolac Epoxy Cresol Novolac**

Manufacturer Sumitomo Sumitomo

Package/Compound Nitto MP-8000C Sumitomo EME-6710

NSC B18 Manufacturer's Designation

Lead Frame Material Copper Copper

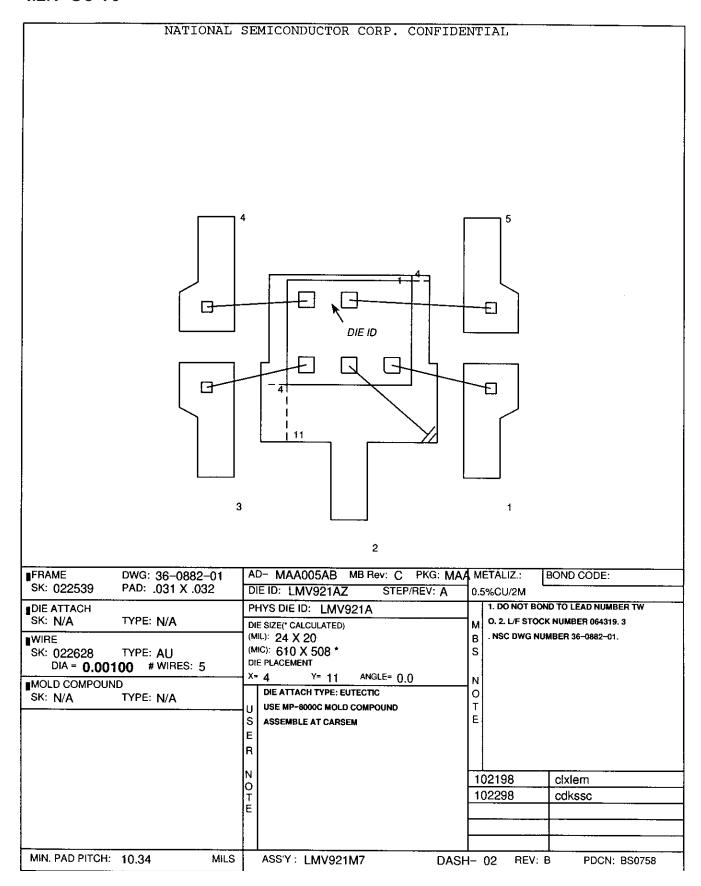
Lead Frame Manufacturer **NSC-DCI** Enomoto

External Lead Frame Coating Solder Plate Solder Plate

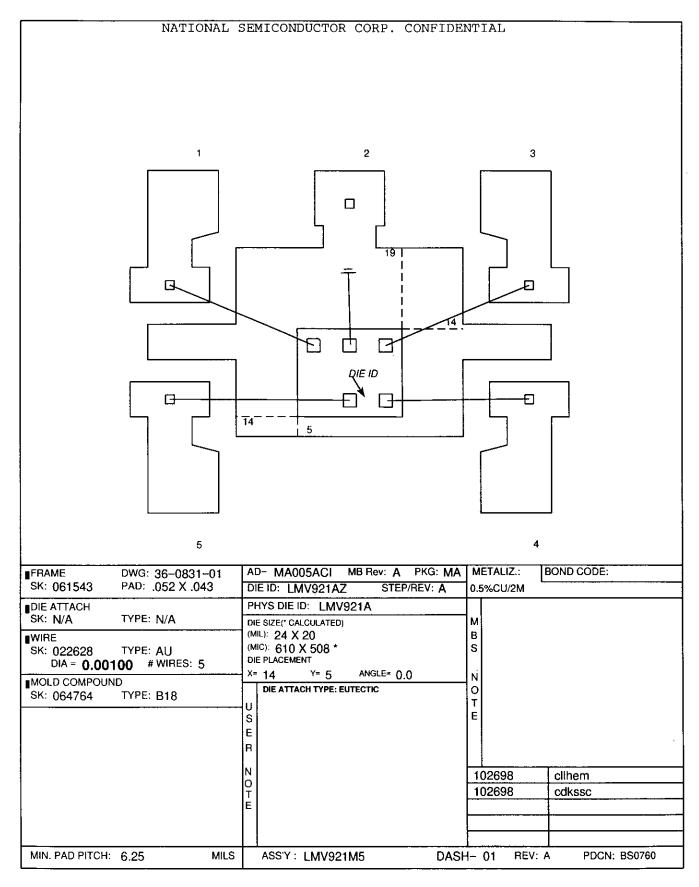
> Sn/Pb Sn/Pb

Pins Gull Wing 6mils Thick Gull Wing 6mils Thick

Die Attach Method Eutectic, Cr/Ag/Sn Eutectic, Cr/Ag/Sn


Bond Wire Gold, 1.0 mils Gold, 1.0 mils

Bond Type Hot Thermosonic Ball Hot Thermosonic Ball


Package Thermal 265°C/W 478°C/W

4.2 Bonding Diagrams

4.2.1 SC-70

4.2.2 SOT23-5

5.1 LMV921 Reliability Report

Reliability Test Report

File Number: FSC19990091 Originator: Alex Ruiz Date:March 29, 1999

Reference File Numbers	Distribution List
	APG Reliability: Alex Ruiz, Thai Ta, Nick Stanco Amplifier Group: Dennis Smith, Carlos Sanchez

Abstract

The LMV921 is being qualified as a new product by the Amplifiers product line. The LMV921 is a low voltage, RRIO op amp processed on CS80CBI and assembled in both the SOT23-5 and the SC70 packages. The LMV921 will be positioned next to the LMC7101, but offers RRIO and equal or better specs than the LMC7101 including operation at 1.8 V and SC70 packaging.

The LMV921 passed all required reliability tests with the exception of MM ESD which passes only 100V. The LMV921 is being released to production with a waiver for MM ESD performance. No corrective action is required for the LMV921, but all derivative products including the dual (LMV922), quad (LMV924) and lowpower versions must include design enhancements resulting in 200V or higher MM ESD performance. The datasheet for the LMV921 must show the 100V MM ESD rating.

5.0 RELIABILITY DATA

Description

Test Request	Device Name	Sbgp Wafer Die Rur	Fab 1 Loc	Tech Code	Pkg Code	#Leads	Assy Loc	Date Cd	Mold Cmpd
RSC199900210	LMV921M7	A	FM	BB	N\SC70	5	EM	9852	MP-8000C
RSC199900984	LMV921M5	A	FM	BB	N\TG23	5	EM		B18

Tests Performed

Tests Performed						
Test: Autoclave Test (A	ACLV)					
Test Request	Device	Sbgrp	Rel Humidity	Pressure	High Temp	LowTemp
RSC199900210	LMV921M7	Α .	100	1 atm	121	0
Test: High Temperature	e Storage test (bake) (HTSI	L)				
Test Request	Device	Sbgrp	Rel Humidity	Pressure	High Temp	LowTemp
RSC199900210	LMV921M7	Α	0	0	150	0
Test: Operating Life Te	est (Static) (SOPL)					
Test Request	Device	Sbgrp	Rel Humidity	Pressure	High Temp	LowTemp
RSC199900210	LMV921M7	Α	0	0	150	0
Test: Temperature Cyc	cle (TMCL)					
Test Request	Device	Sbgrp	Rel Humidity	Pressure	High Temp	LowTemp
RSC199900210	LMV921M7	Α	0	0	150	-65
Test: Temperature Hur	midity Bias Test (THBT)					
Test Request	Device	Sbgrp	Rel Humidity	Pressure	High Temp	LowTemp
RSC199900210	LMV921M7	Α	85	0	85	0
Test: Electrostatic Disc	charge - Machine Model (ES	SDM)				
Test Request	Device	,	Method			
RSC199900984	LMV921M5					
	Note: package type is SO	IC.	ATE			
Test: Electrostatic Disc	harge - Human Body Mode	I (ESDH)				
Test Request	Device		Method			
RSC199900984	LMV921M5	10	A.T.C.			
	Note: Package type is SO	iiC.	ATE			
	Test: Latch Up -Static (LUPS)					
Test Request	Device		Fail Criteria	Method		
RSC199900984	LMV921M5 Note: Package type is SO	IC	0002	ATE		
	Note. Fackage type is 50	iiC.	0002	AIE		
IB1 Precondition	ing Flow: all THBT. TMC	CL and AC	CLV units were su	bjected to the	following precor	nditioning flow prior to stress testing.
	IB1 Preconditioning Flow : all THBT, TMCL and ACLV units were subjected to the following preconditioning flow prior to stress testing.					

temp cycle - 5 cycles at -40/60C \Rightarrow bake - 16 hours at 125C \Rightarrow moisture sensitivity level 1 - moisture soak for 168 hours at 85C and 85%RH \Rightarrow 235C IR reflow , 3 passes \Rightarrow Flux immersion \Rightarrow DI water rinse \Rightarrow dry \Rightarrow electrical test

Environmental Test Results

Tests	Time-Point (hrs)	Lot A	Lot B
DOPL	168	0/100	-
(Dynamic Operating Life)	500	0/100	-
	1000	0/100	-

Environmental Test Results (continued)

Tests	Time-Point (hrs)	Number of Failures
ACLV (Autoclave)	168	0/50
TMCL (Temp Cycle)	500	0/100
	1000	0/100
	168	0/100
THBT (Temp Humidity Bias Test)	500	0/100
	1000	0/100
HTSL	500	0/100
(High Temperature Storage Test)	1000	0/100

ESD (Electro-Static Discharge) Test Results

Tests	Voltage (V)	Number of Failures
	500	0/4
ESD	1000	0/4
Human Body Model	1500	0/4
	2000	0/4
	2500	4/4
	50	0/4
ESD	100	0/4
Machine Model	150	2/4
	200	0/4
	250	4/4

Latch-up Test Results

Tests	Temperature (C)	Number of Failures		
	25	0/5		
Latch-up	70	0/5		

Qualification Requirements and Status Summary

Caumitation resolutions and status caminary					
Tests	Requirements	Status			
DOPL (Dynamic Operating Life)	500 hours	Pass			
ACLV (Autoclave)	168 hours	Pass			
TMCL (Temp Cycle)	500 hours	Pass			
THBT (Temp Humidity Bias Test)	500 hours	Pass			
HTSL (High Temp Storage)	500 hours	Pass			
ESD	2000 V	Pass			
Human Body Model					
ESD	200 V	Fail			
Machine Model		(release with waiver)			
Latch-up	25 and 70 C	Pass			

FIT and EFR Calculation

FIT (Failure Unit) – a measure of failure rate, defined as one failure in on billion device-hours.

= 150 C Assume: 1) Tj

2) Tj Application = 55 C 3) Activation Energy = 0.7 ev 4) Acceleration Factor = 259.07 5) Confidence Factor = 60%

Then:

FIT = 35.37 failures per one billion device-hours

5.0 RELIABILITY DATA

Conclusion

The LMV921 product qualification has successfully satisfied all reliability requirements per qual plan Q19980588 with the exception of Machine Model (MM) ESD testing. The LMV921 is being released to production with a waiver for MM ESD performance with no requirement for corrective action on the LMV921. As a condition of this waiver all future derivative products, including planned dual, quad and low-power versions of the LMV921 must meet a minimum of 200V MM ESD prior to release.

The LMV921 is now fully qualified and approved for production release in both the 5L SOT-23 and 5L SC70 packages.

National Semiconductor supplies a comprehensive set of service and support capabilities. Complete product information and design support is available from National's customer support centers.

To receive sales literature and technical assistance, contact the National support center in your area.

Americas

Tel: 1-800-272-9959 Fax: 1-800-737-7018 Email: support@nsc.com

Europe

Fax: +49 (0) 1 80 5 30 85 86 Email: europe.support@nsc.com Deutsch Tel: +49 (0) 1 80 5 30 85 85 English Tel: +49 (0) 1 80 5 32 78 32

Japan

Tel: 81-3-5639-7560 Fax: 81-3-5639-7507

Asia Pacific

Fax: 65-2504466

Email: sea.support@nsc.com

Tel: 65-2544466

(IDD telephone charge to be paid by caller)

See us on the Worldwide Web @ http://www.national.com