
Data Sheet

Monolithic Ceramic Capacitors

GRM188R71C104KA01 (0603, X7R, 0.10μF, 16Vdc)

□: packaging code

■ Dimensions

Length L	1.60mm±0.10mm
Width W	0.80mm±0.10mm
Thickness T	0.80mm±0.10mm
Electrode e	0.20 to 0.50mm
Electrode Gap g (min.)	0.50mm

■ Packaging

Code	Packaging	Minimum Quantity	
D	180mm Paper Tape	4000	
J 330mm Paper Tape		10000	
С	Bulk Case	15000	
В	Bulk(Bag)	1000	

■ Rated Value

TC Code	R7			
TC Code (Standard)	X7R (EIA)			
Capacitance Change	±15%			
Capacitance	0.10μF±10%			
Rated Voltage	16Vdc			

■ Specifications

Please refer to 'Specification' PDF file.

- This data sheet is applied for CHIP MONOLITHIC CERAMIC CAPACITOR used for General Electronics equipment for your design.
- Solderability of Tin plating termination chip might be deteriorated when low temperature soldering profile where peak solder temperature is below the Tin melting point is used. Please confirm the solderability of Tin plating termination chip before use.

♠ Note:

1. Export Control

(For customers outside Japan)

Murata products should not be used or sold for use in the development, production, stockpiling or utilization of any conventional weapons or mass-destructive weapons (nuclear weapons, chemical or biological weapons, or missiles), or any other weapons.

For products which are controlled items subject to the "Foreign Exchange and Foreign Trade Law" of Japan, the export license specified by the law is required

- 2. Please contact our sales representatives or product engineers before using the products in this data sheet for the applications listed below, which require especially high reliability for the prevention of defects which might directly damage to a third party's life, body or property, or when one of our products is intended for use in applications other than those specified in this data sheet.
 - 1 Aircraft equipment
- ② Aerospace equipment
- 3 Undersea equipment
- 4 Power plant equipment
- 5 Medical equipment 7 Traffic signal equipment
- 6 Transportation equipment (vehicles, trains, ships, etc.)
- 8 Disaster prevention / crime prevention equipment
- (1) Application of similar complexity and/or reliability requirements to the applications listed in the above
- 3. They are subject to change or our products in it may be discontinued without advance notice. Please check with our sales representatives or product engineers before ordering. If there are any questions, please contact our sales representatives or product engineers.
- 4. This data sheet has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering. Especially, please read rating and 🛆 CAUTION (for storage, operating, rating, soldering, mounting and handling) in them to prevent smoking and/or burning, etc.
- 5. You are able to read a detailed specification in the website of Search Engine (http://search.murata.co.jp/) or catalog library (http://www.murata.com/catalog/) before to require our product specification or to transact the approval sheet for product specification.
- 6. Please note that unless otherwise specified, we shall assume no responsibility whatsoever for any conflict or dispute that may occur in connection with the effect of our and/or a third party's intellectual property rights and other related rights in consideration of your use of our products and/or information described or contained in our data sheets. In this connection, no representation shall be made to the effect that any third parties are authorized to use the right mentioned above under licenses without our consent.
- 7. No ozone depleting substances (ODS) under the Montreal Protocol are used in our manufacturing process.

		Specifi	cations				
No.	Item	Temperature Compensating Type	High Dielectric Type	Test Method			
1	Operating Temperature Range	-55 to +125℃	B1, B3, F1, R6 : −25 to +85°C R1, R7 : −55 to +125°C E4 : +10 to +85°C F5 : −30 to +85°C	Reference temperature : 25°C (2Δ, 3Δ, 4Δ, B1, B3, F1, R1, R6 : 20°C)			
2	Rated Voltage	See the previous pages		The rated voltage is defined as the maximum voltage which may be applied continuously to the capacitor. When AC voltage is superimposed on DC voltage, V ^{p.p} or V ^{o.p} , whichever is larger, should be maintained within the rated voltage range.			
3	Appearance	No defects or abnormalities		Visual inspection			
4	Dimensions	Within the specified dimensions		Using calipers			
5	Dielectric Strength	No defects or abnormalities		No failure should be observed when *300% of the rated voltage (temperature compensating type) or 250% of the rated voltage (high dielectric constant type) is applied between the terminations for 1 to 5 seconds, provided the charge/discharge current is less than 50mA. *200% for 500V			
6	Insulation Resistance	C≤0.047μF : More than 10,000MΩ $ C>0.047μF: 500Ω \cdot F $ $ C: Nominal Capacitance $		The insulation resistance should be measured with a DC voltage not exceeding the rated voltage at 20/25℃ and 75%RH max. and within 2 minutes of charging, provided the charge/discharge current is less than 50mA.			
7	Capacitance	Within the specified tolerance		The capacitance/Q/D.F. should be measured at 20/25℃ at the			
8	Q/ Dissipation Factor (D.F.)	30pF and over : Q≥1000 30pF and below : Q≥400+20C C : Nominal Capacitance (pF)	[B1, B3, R1, R6, R7, E4, C8] W.V.: 25V min.: 0.025 max. W.V.: 16/10V: 0.035 max. W.V.: 6.3/4V : 0.05 max. (C<3.3μF) : 0.1 max. (C≥3.3μF) [F1, F5] W.V.: 25V min. : 0.05 max. (C<0.1μF) : 0.09 max. (C≥0.1μF) W.V.: 16/10V: 0.125 max. W.V.: 6.3V: 0.15 max.	Char. ΔC to ΔU, 1X (more than 1000pF) E4			

Continued on the following page.

			Snecifi	cations							
No.	lte	em	Temperature Compensating Type	High Dielectric Type			Test Me	thod			
		No bias	Within the specified tolerance (Table A-1) Within the \$2/-50\$ (H1, R7 : Within $\pm 15\%$ (H1) Temperature capacitance ± 10 Within the specified tolerance (Table A-1) Within the \$2/-50\% (H1) to $\pm 10\%$ (H2) to $\pm 10\%$ (H					apacitance change should be measured after 5 min. at specified temp. stage. mperature Compensating Type emperature coefficient is determined using the itance measured in step 3 as a reference. cycling the temperature sequentially from step 1 through : +25 to +125°C/AC: +20 to +125°C: other temp. coeffs. to +85°C/+20 to +85°C) the capacitance should be within vecified tolerance for the temperature coefficient and itance change as Table A-1. apacitance drift is calculated by dividing the differences en the maximum and minimum measured values in the , 3 and 5 by the cap. value in step 3.			
				(−55 to +105°C)	St	•		emperatu			
						1			perature ±2		
		50% of the Rated		B1 : Within +10/–30% R1 : Within +15/–40%		2	,		±3 (for other TC)		
		Voltage		F1 : Within +30/–95%		3 4			perature ±2		
		ronago					· `		3 (for other TC)		
				/			Constant Type		perature ±2		
9	Capacitance Temperature Characteristics		Within ±0.2% or ±0.05pF (Whichever is larger.)		The ranges of capacitance change con value over the temperature ranges sho be within the specified ranges.* In case of applying voltage, the capacit measured after 1 more min. with applying equilibration of each temp. stage. Step Temperature (°C)		e compai s shown apacitanc applying v	wn in the table should ance change should be			
		Capacitance			1	Refere	nce Temperet	ure ±2			
					-55±3 (for R1, R7, R6) 2 -25±3 (for B1, B3, F1) -30±3 (for F5)/10±3 (for E4		, F1)	No bias			
		Drift	*Not apply to 1X/25V	*Initial measurement for high	3	Refere	nce Temperet	ure ±2	NO DIAS		
				dielectric constant type Perform a heat treatment at 150+0/-10 ℃ for one hour	4		5±3 (for R1, F ±3 (for B1, B3, F1, F5, E4)				
				and then set for 48±4 hours at room temperature.	5	Refere	nce Temperet	ure ±2			
				Perform the initial measurement.	6		-55±3 (for R1)/ -25±3 (for B1, F1)		50% of the rated		
					7	Refere	Reference Tempereture ±2		voltage		
					8	125±3 (for R1)/					
					-	8:	5±3 (for B1, F	1)			
		No removal of the terminations		or other defect should occur	Fig. 1a using parallel with The solder reflow method soldering is	ng an eu h the tes ing shou hod and s uniform	tectic solder. The tig for 10±1 sold be done eithe should be con	Then appl sec. ner with a ducted w efects suc			
	Adhasiss	Ctroneth	+ 1/4 1/4 1/4 1/4	7 77	Ту	ne	a	b	(in mm)		
10	Adhesive of Termin	_		Ø	GRM02		0.2	0.56			
	or remill	ation			GR□03	3	0.3	0.9	0.3		
				Solder resist	GR□15		0.4	1.5	0.5		
				Baked electrode or copper foil	GRM18		1.0	3.0	1.2		
			F1 4	cobber roll	GRM21 GRM31		1.2 2.2	4.0 5.0	1.65 2.0		
			Fig. 1a		GRM32		2.2	5.0	2.9		
					GRM43		3.5	7.0	3.7		
					GRM5		4.5	8.0	5.6		

	Specifications								
No.	lte	em	Temperature Compensating Type	High Dielectric Type	Test Method		od		
		Appearance	No defects or abnormalities						
		Capacitance	Within the specified tolerance						
11	Vibration Resistance	Q/D.F.	30pF and over : Q≥1000 30pF and below : Q≥400+20C C : Nominal Capacitance (pF)	[B1, B3, R1, R6, R7, E4, C8] W.V.: 25V min.: 0.025 max. W.V.: 16/10V: 0.035 max. W.V.: 6.3/4V : 0.05 max. (C<3.3μF) : 0.1 max. (C≥3.3μF) [F1, F5] W.V.: 25V min. : 0.05 max. (C<0.1μF) : 0.09 max. (C≥0.1μF) W.V.: 16/10V: 0.125 max. W.V.: 6.3V: 0.15 max.	same manner and under the same conditions as (10). The capacitor should be subjected to a simple harmonic in having a total amplitude of 1.5mm, the frequency being valuniformly between the approximate limits of 10 and 55Hz frequency range, from 10 to 55Hz and return to 10Hz, sho be traversed in approximately 1 minute. This motion shou applied for a period of 2 hours in each 3 mutually perpendirections (total of 6 hours).				
	2 Deflection		No crack or marked defect shou	uld occur	in Fig. 2a using direction shown done either with	acitor on the test jig (g an eutectic solder. Th in Fig. 3a for 5±1 se n an iron or using the	hen apply a c. The solo reflow metl	a force in the dering should be hod and should	
12			20 50 Pressurizing speed: 1.0mm/sec. Pressurize Pressurize Flexure: ≤1 Capacitance meter 45 Fig. 3a		Type GRM02 GR□03 GR□15 GRM18 GRM21 GRM31 GRM32 GRM43 GRM55	100 Fig. 2a	b 0.56 0.9 1.5 3.0 4.0 5.0 7.0 8.0	03/15:t:0.8mm) c 0.23 0.3 0.5 1.2 1.65 2.0 2.9 3.7 5.6 (in mm)	
13	Solderab Terminati		75% of the terminations are to be continuously	pe soldered evenly and	rosin (JIS-K-5902) (25% rosin in weight proportion). Preheat at 80 to 120°c for 10 to 30 seconds. After preheating, immerse in an eutectic solder solution for 2±0.5 seconds at 230±5°c.				
			The measured and observed chapecifications in the following ta						
		Appearance	No defects or abnormalities						
		Capacitance Change	Within ±2.5% or ±0.25pF (Whichever is larger)	B1, B3, R1, R6, R7, C8 : Within ±7.5% F1, F5, E4 : Within ±20%	Preheat the capacitor at 120 to 150°C for Immerse the capacitor in an eutectic so for 10±0.5 seconds. Set at room tempor	solder solu	ıtion at 270±5℃		
14	Resistance to Soldering Heat	Q/D.F.	30pF and over : Q≥1000 30pF and below : Q≥400+20C C : Nominal Capacitance (pF)	[B1, B3, R1, R6, R7, E4, C8] W.V.: 25V min.: 0.025 max. W.V.: 16/10V: 0.035 max. W.V.: 6.3/4V : 0.05 max. (C<3.3 μ F): 0.1 max. (C≥3.3 μ F) [F1, F5] W.V.: 25V min. : 0.05 max. (C<0.1 μ F): 0.09 max. (C≥0.1 μ F) W.V.: 16/10V: 0.125 max. W.V.: 6.3V: 0.15 max.	(temperature compensating type) or 48±4 h constant type), then measure. •Initial measurement for high dielectric constant type.		48±4 hours	s (high dielectric	
		I.R.	More than $10,000 \text{M}\Omega$ or 500Ω	F (Whichever is smaller)	1				
		Dielectric	No defects	. (minoror is smaller)	-				
	Strength								

\ .
∖ I
N

			Specifi	cations					
No.	lte	em	Temperature Compensating Type	High Dielectric Type		Tes	Method	I	
			The measured and observed ch specifications in the following ta						
		Appearance	No defects or abnormalities						
		Capacitance Change	Within ±2.5% or ±0.25pF (Whichever is larger)	B1, B3, R1, R6, R7, C8 : Within ±7.5% F1, F5, E4 : Within ±20%	Fix the capacitor to the supporting jig in the same manner and under the same conditions as (10). Perform the five cycles according to the four heat treat shown in the following table.	atments			
				[B1, B3, R1, R6, R7, E4, C8] W.V.: 25V min.: 0.025 max. W.V.: 16/10V: 0.035 max.	Set for 24±2 hours (temperature compensating type) or 48± hours (high dielectric constant type) at room temperature, the measure.				
15	Temperature		30pF and over : Q≥1000	W.V.: 6.3/4V	Step	1	2	3	4
15	Cycle	Q/D.F.	30pF and below : Q≧400+20C	: 0.05 max. (C<3.3μF) : 0.1 max. (C≥3.3μF) [F1, F5]	Temp. (℃)	Min. Operating Temp. +0/-3	Room Temp.	Max. Operating Temp. +3/-0	Room Temp.
			C : Nominal Capacitance (pF) W.V. : 25V min. : 0.05 max. (C<0.1μF) : 0.09 max. (C≥0.1μF) W.V. : 16/10V : 0.125 max. W.V. : 6.3V : 0.15 max.		Time (min.)	30±3	2 to 3	30±3	2 to 3
		I.R.		•Initial measurement for high dielectric constant type Perform a heat treatment at 150+0/−10℃ for one hour and then set at room temperature for 48±4 hours. Perform the initial measurement.					
			More than $10,000M\Omega$ or $500\Omega \cdot F$ (Whichever is smaller)						
		Dielectric Strength	No defects						
			The measured and observed ch specifications in the following ta						
		Appearance	No defects or abnormalities						
		Capacitance Change	Within ±5% or ±0.5pF	B1, B3, R1, R6, R7, C8					
		Onlinge	(Whichever is larger)	: Within ±12.5% F1, F5 : Within ±30%					
16	Humidity (Steady State)	Q/D.F.	(Whichever is larger) 30pF and over : Q≥350 10pF and over 30pF and below : Q≥275+2.5C 10pF and below : Q≥200+10C C : Nominal Capacitance (pF)	1	Set the capacit 500±12 hours. Remove and s type) or 48±4 temperature, th	et for 24±2 hor nours (high die	urs (temp	perature compe	ensating

Continued on the following page. $\begin{tabular}{|c|c|c|c|}\hline \end{tabular}$

1
N

	Specifications		cations		
No.	Ite	em	Temperature Compensating Type	High Dielectric Type	Test Method
			The measured and observed che specifications in the following ta	,	
		Appearance	No defects or abnormalities		
		Capacitance Change	Within ±7.5% or ±0.75pF (Whichever is larger)	B1, B3, R1, R6, R7, C8 : Within ±12.5% F1, F5, E4: Within ±30% [W.V.: 10V max.] F1, F5: Within +30/-40%	Apply the rated voltage at 40±2°C and 90 to 95% humidity for 500±12 hours. Remove and set for 24±2 hours (temperature compensating type) or 48±4 hours (high dielectric constant
17	Humidity Load	Q/D.F.	30pF and over : Q≥200 30pF and below : Q≥100+10C/3 C : Nominal Capacitance (pF)	[B1, B3, R1, R6, R7, E4, C8] W.V.: 25V min.: 0.05 max. W.V.: 16/10V: 0.05 max. W.V.: 6.3V	type) at room temperature, then measure. The charge/discharge current is less than 50mA. Initial measurement for F1, F5/10V max. Apply the rated DC voltage for 1 hour at 40±2°C. Remove and set for 48±4 hours at room temperature. Perform initial measurement.
		I.R.	More than $500 \mathrm{M}\Omega$ or $25 \Omega \cdot \mathrm{F}$ (V	Vhichever is smaller)	
			The measured and observed ch specifications in the following ta	-	
		Appearance	No defects or abnormalities		
	High Temperature Load	Capacitance Change	Within ±3% or ±0.3pF (Whichever is larger)	B1, B3, R1, R6, R7, C8 : Within ±12.5% F1, F5, E4: Within ±30% [Except 10V max. and. C≥1.0μF] F1, F5: Within +30/−40% [10V max. and C≥1.0μF]	Apply *200% of the rated voltage at the maximum operating temperature ±3°C for 1000±12 hours. Set for 24±2 hours (temperature compensating type) or 48±4 hours (high dielectric constant type) at room temperature, then measure.
18		Q/D.F.	30pF and over : Q≥350 10pF and over 30pF and below : Q≥275+2.5C 10pF and below : Q≥200+10C C : Nominal Capacitance (pF)	$[B1, B3, R1, R6, R7, E4, C8] \\ W.V.: 25V min.: 0.04 max. \\ W.V.: 16/10V: 0.05 max. \\ W.V.: 6.3V \\ : 0.075 max. (C<3.3 \mu F) \\ : 0.125 max. (C \ge 3.3 \mu F) \\ [F1, F5] \\ W.V.: 25V min. \\ : 0.075 max. (C \le 0.1 \mu F) \\ : 0.125 max. (C \ge 0.1 \mu F) \\ W.V.: 16/10V: 0.15 max. \\ W.V.: 6.3V: 0.2 max. \\ W.V.: 6.3V: 0.2 max. \\ \label{eq:w.v.}$	The charge/discharge current is less than 50mA. •Initial measurement for high dielectric constant type. Apply 200% of the rated DC voltage at the maximum operating temperature ±3℃ for one hour. Remove and set for 48±4 hours at room temperature. Perform initial measurement. *150% for 500V
		I.R.	More than 1,000M Ω or 50 Ω · F	(Whichever is smaller)	