
Vishay Semiconductors formerly General Semiconductor

Small-Signal Diode

Reverse Voltage 100V Forward Current 150mA

MiniMELF (SOD-80C)

Dimensions in inches and (millimeters)

Features

- Silicon Epitaxial Planar Diode
- Fast switching diode in MiniMELF case especially suited for automatic insertion.
- This diode is also available in other case styles including the DO-35 case with the type designation 1N4148, the SOD-123 case with the type designation 1N4148W, and the SOT-23 case with the type designation IMBD4148.

Mechanical Data

Case: MiniMELF Glass Case (SOD-80)

Weight: approx. 0.05g Cathode Band Color: Black

Packaging Codes/Options:

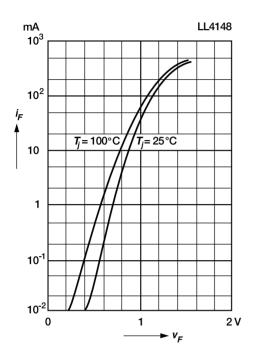
F4/10K per 13" reel (8mm tape), 50K/box

Maximum Ratings and Thermal Characteristics (TA = 25°C unless otherwise noted)

Parameter	Symbol	Limit	Unit	
Reverse Voltage	V _R	75	V	
Peak Reverse Voltage	VRM	100	V	
Forward DC Current at T _{amb} = 25°C ⁽¹⁾	lF	200	mA	
Average Rectified Current: Half Wave Rectification with Resistive Load at $T_{amb} = 25$ °C f ≥ 50 Hz ⁽¹⁾	lF(AV)	150	mA	
Surge Forward Current at t < 1s and Tj = 25°C	I _{FSM}	500	mA	
Power Dissipation at T _{amb} = 25°C ⁽¹⁾	Ptot	500	mW	
Thermal Resistance Junction to Ambient Air ⁽²⁾	RθJA	350	°C/W	
Thermal Resistance Junction to tie-point	R _θ Jtp	300	°C/W	
Junction Temperature	Tj	175	°C	
Storage Temperature	Ts	-65 to +175	°C	

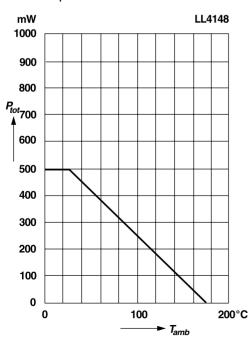
Electrical Characteristics (TJ = 25°C unless otherwise noted)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit	
Forward Voltage	VF	I _F = 10mA	_	_	1	V	
Leakage Current		VR = 20V	_	_	25	nA	
	I _R	V _R = 75V	_	_	5	μΑ	
		V _R = 20V, T _J = 150°C	_	_	50	μΑ	
Capacitance	Ctot	VF = VR = 0	_	_	4	pF	
Voltage Rise when Switching ON (tested with 50 mA Forward Pulses)	V _{fr}	$t_p = 0.1 \mu s$, Rise time < 30ns $f_p = 5$ to 100kHz	_	_	2.5	V	
Reverse Recovery Time	t _{rr}	$I_F = 10$ mA, $I_R = 1$ mA, $V_R = 6$ V, $R_L = 100$ Ω	_	_	4	ns	
Rectification Efficiency (See third page)	ην	f = 100MHz, VRF = 2V	0.45	_	_	_	

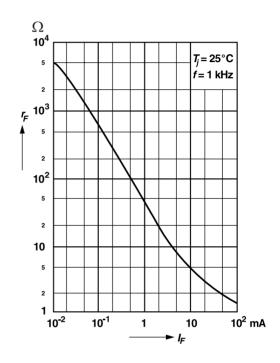

Notes: (1) Valid provided that electrodes are kept at ambient temperature

(2) Device mounted on FR4 printed-circuit board

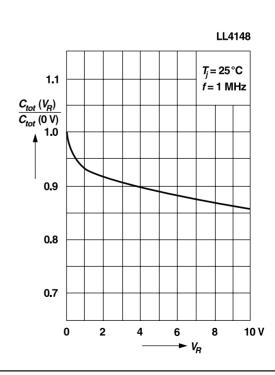
Vishay Semiconductors formerly General Semiconductor


Ratings and Characteristic Curves (TA = 25°C unless otherwise noted)

Forward characteristics

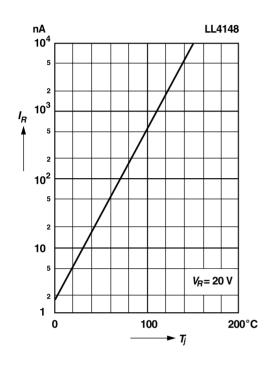


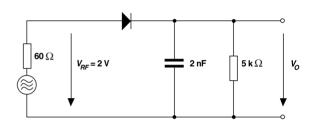
Admissible power dissipation versus ambient temperature


Valid provided that electrodes are kept at ambient temperature

Dynamic forward resistance versus forward current

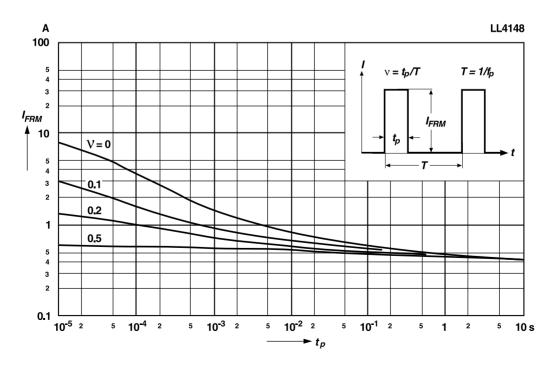
Relative capacitance versus reverse voltage


Document Number 88212 14-May-02


Vishay Semiconductors formerly General Semiconductor

Ratings and Characteristic Curves (TA = 25°C unless otherwise noted)

Leakage current versus junction temperature



Rectification Efficiency Measurement Circuit

Admissible repetitive peak forward current versus pulse duration

Valid provided that electrodes are kept at ambient temperature

