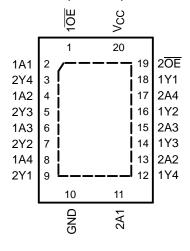

FEATURES

- Operates From 1.65 V to 3.6 V
- Inputs Accept Voltages to 5.5 V
- Specified From –40°C to 85°C and –40°C to 125°C
- Max t_{pd} of 5.9 ns at 3.3 V
- Typical V_{OLP} (Output Ground Bounce) < 0.8 V at V_{CC} = 3.3 V, T_A = 25°C
- Typical V_{OHV} (Output V_{OH} Undershoot) > 2 V at V_{CC} = 3.3 V, T_A = 25°C
- Supports Mixed-Mode Signal Operation on All Ports (5-V Input/Output Voltage With 3.3-V V_{CC})
- I_{off} Supports Partial-Power-Down Mode Operation
- Latch-Up Performance Exceeds 250 mA Per JESD 17
- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)
 - 1000-V Charged-Device Model (C101)


DESCRIPTION/ORDERING INFORMATION

This octal buffer/line driver is operational at 1.5-V to 3.6-V V_{CC} , but is designed specifically for 1.65-V to 3.6-V V_{CC} operation.

DB, DGV, DW, N, NS, OR PW PACKAGE (TOP VIEW)

RGY PACKAGE (TOP VIEW)

ORDERING INFORMATION

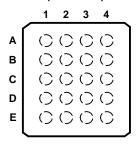
T _A	PACKAG	E ⁽¹⁾	ORDERABLE PART NUMBER	TOP-SIDE MARKING	
	QFN – RGY	Reel of 1000	SN74LVC244ARGYR	LC244A	
-40°C to 85°C	VFBGA – GQN	Reel of 1000	SN74LVC244AGQNR	LC244A	
	VFBGA – ZQN (Pb-Free)	Reel of 1000	SN74LVC244AZQNR	LO244A	
	PDIP – N	Tube of 20	SN74LVC244AN	SN74LVC244AN	
	SOIC - DW	Tube of 25	SN74LVC244ADW	LVC244A	
		Reel of 2000	SN74LVC244ADWR	LVO244A	
	SOP - NS	Reel of 2000	SN74LVC244ANSR	LVC244A	
-40°C to 125°C	SSOP - DB	Reel of 2000	SN74LVC244ADBR	LC244A	
		Tube of 70	SN74LVC244APW		
	TSSOP - PW	Reel of 2000	SN74LVC244APWR	LC244A	
		Reel of 250	SN74LVC244APWT		
	TVSOP – DGV	Reel of 2000	SN74LVC244ADGVR	LC244A	

(1) Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SCAS414X-NOVEMBER 1992-REVISED MARCH 2005

DESCRIPTION/ORDERING INFORMATION (CONTINUED)


The SN74LVC244A is organized as two 4-bit line drivers with separate output-enable (\overline{OE}) inputs. When \overline{OE} is low, the device passes data from the A inputs to the Y outputs. When \overline{OE} is high, the outputs are in the high-impedance state.

Inputs can be driven from either 3.3-V or 5-V devices. This feature allows the use of this device as a translator in a mixed 3.3-V/5-V system environment.

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

This device is fully specified for partial-power-down applications using I_{off} . The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

GQN OR ZQN PACKAGE (TOP VIEW)

TERMINAL ASSIGNMENTS

	1	2	3	4
Α	1A1	1 OE	V_{CC}	2 OE
В	1A2	2A4	2Y4	1Y1
С	1A3	2Y3	2A3	1Y2
D	1A4	2A2	2Y2	1Y3
E	GND	2Y1	2A1	1Y4

FUNCTION TABLE (EACH BUFFER)

INP	JTS	OUTPUT			
ŌĒ	Α	Y			
L	Н	Н			
L	L	L			
Н	X	Z			

SN74LVC244A

LOGIC DIAGRAM (POSITIVE LOGIC) 10E 1 20E 19 9 2Y1 1A1 2 16 1Y2 2A2 13 7 2Y2 1A3 6 14 1Y3 2A3 15 5 2Y3 1A4 8 12 1Y4 2A4 17 3 2Y4

Pin numbers shown are for the DB, DGV, DW, N, NS, PW, and RGY packages.

Absolute Maximum Ratings(1)

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT	
V_{CC}	Supply voltage range		-0.5	6.5	V	
VI	Input voltage range ⁽²⁾		-0.5	6.5	V	
Vo	Voltage range applied to any output in th	Voltage range applied to any output in the high-impedance or power-off state (2)				
Vo	Voltage range applied to any output in the high or low state ⁽²⁾⁽³⁾			V _{CC} + 0.5	V	
I _{IK}	Input clamp current	V _I < 0		-50	mA	
I _{OK}	Output clamp current	V _O < 0		– 50	mA	
Io	Continuous output current			±50	mA	
	Continuous current through V _{CC} or GND		±100	mA		
		DB package (4)		70		
		DGV package ⁽⁴⁾		92		
		DW package ⁽⁴⁾		58		
0	Deales as the survey income deales	GQN/ZQN package ⁽⁴⁾		78	°C/W	
θ_{JA}	Package thermal impedance	N package ⁽⁴⁾		69	C/VV	
		NS package ⁽⁴⁾		60		
		PW package ⁽⁴⁾		83		
		RGY package ⁽⁵⁾		37		
T _{stg}	Storage temperature range		-65	150	°C	
P _{tot}	Power dissipation	$T_A = -40^{\circ}\text{C to } 125^{\circ}\text{C}^{(6)(7)}$		500	mW	

Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
 The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.

⁽³⁾ The value of V_{CC} is provided in the recommended operating conditions table.

⁽⁴⁾ The package thermal impedance is calculated in accordance with JESD 51-7.

⁽⁵⁾ The package thermal impedance is calculated in accordance with JESD 51-5.

 ⁽⁶⁾ For the DW package: above 70°C the value of P_{tot} derates linearly with 8 mW/K.

⁽⁷⁾ For the DB, DGV, N, NS, and PW packages: above 60°C the value of P_{tot} derates linearly with 5.5 mW/K.

SCAS414X-NOVEMBER 1992-REVISED MARCH 2005

Recommended Operating Conditions⁽¹⁾

			T _A = 2	25°C	–40 TO	85°C	-40 TO	UNIT	
			MIN	MAX	MIN	MAX	MIN	MAX	UNII
V Cumply v	, altaga	Operating	1.65	3.6	1.65	3.6	1.65	3.6	V
V _{CC} Supply v	voitage	Data retention only	1.5		1.5		1.5		V
	, High-level ^{IH} input voltage	V _{CC} = 1.65 V to 1.95 V	0.65 × V _{CC}		0.65 × V _{CC}		0.65 × V _{CC}		
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	1.7		1.7		1.7		V
input voltage	$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$	2		2		2			
		V _{CC} = 1.65 V to 1.95 V		0.35 × V _{CC}		0.35 × V _{CC}		0.35 × V _{CC}	
V/	V _{IL} Low-level input voltage	V _{CC} = 2.3 V to 2.7 V		0.7		0.7		0.7	V
input voltage	V _{CC} = 2.7 V to 3.6 V		0.8		0.8		0.8		
V _I Input vol	ltage		0	5.5	0	5.5	0	5.5	V
V _O Output v	voltage		0	V _{CC}	0	V _{CC}	0	V_{CC}	V
		V _{CC} = 1.65 V		-4		-4		-4	
, High-leve	/el	V _{CC} = 2.3 V		-8		-8		-8	mA
OH output cu	urrent	$V_{CC} = 2.7 \text{ V}$		-12		-12		-12	IIIA
		$V_{CC} = 3 V$		-24		-24		-24	
		V _{CC} = 1.65 V		4		4		4	
Low-leve	I _{OL} Low-level output current	V _{CC} = 2.3 V		8		8		8	mΛ
OL output cu		V _{CC} = 2.7 V		12		12		12	mA
		V _{CC} = 3 V		24		24		24	

⁽¹⁾ All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

SN74LVC244A

Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

DADAMETED	TEST CONDITIONS		V _{cc}	T _A	= 25°C		-40 TO	85°C	–40 TO 125°C		UNIT	
PARAMETER	TEST CONDITIO	TEST CONDITIONS		MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNII	
	I _{OH} = -100 μA		1.65 V to 3.6 V	V _{CC} - 0.2			V _{CC} – 0.2		V _{CC} – 0.3			
	$I_{OH} = -4 \text{ mA}$		1.65 V	1.29			1.2		1.05			
V_{OH}	$I_{OH} = -8 \text{ mA}$		2.3 V	1.9			1.7		1.55		V	
	10 m A		2.7 V	2.2			2.2		2.05			
	$I_{OH} = -12 \text{ mA}$		3 V	2.4			2.4		2.25			
	I _{OH} = -24 mA		3 V	2.3			2.2		2			
	$I_{OL} = 100 \mu A$		1.65 V to 3.6 V			0.1		0.2		0.3		
	I _{OL} = 4 mA		1.65 V			0.24		0.45		0.6	V	
V_{OL}	I _{OL} = 8 mA		2.3 V			0.3		0.7		0.75		
	I _{OL} = 12 mA		2.7 V			0.4		0.4		0.6		
	I _{OL} = 24 mA		3 V			0.55		0.55		0.8		
I _I	$V_I = 5.5 \text{ V or GND}$		3.6 V			±1		±5		±20	μΑ	
I _{off}	V_I or $V_O = 5.5 \text{ V}$		0			±1		±10		±20	μΑ	
I _{OZ}	$V_0 = 0 \text{ to } 5.5 \text{ V}$		3.6 V			±1		±10		±20	μΑ	
	$V_I = V_{CC}$ or GND		0.01/			1		10		40		
I _{CC}	$3.6 \text{ V} \le \text{V}_{\text{I}} \le 5.5 \text{ V}^{(1)}$	$I_O = 0$	3.6 V			1		10		40	μΑ	
Δl _{CC}	One input at V _{CC} – 0.6 V, Other inputs at V _{CC} or GND		2.7 V to 3.6 V			500		500		5000	μΑ	
Ci	$V_I = V_{CC}$ or GND		3.3 V		4						pF	
C _o	$V_O = V_{CC}$ or GND		3.3 V		5.5						pF	

⁽¹⁾ This applies in the disabled state only.

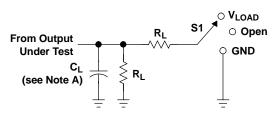
Switching Characteristics

over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

PARAMETER	FROM	то	V	T,	_λ = 25°C	;	-40 TO	85°C	–40 TO 125°C		UNIT
PARAMETER	(INPUT)	(OUTPUT)	V _{cc}	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNII
			1.5 V	1	7	14.4	1	14.9	1	16.4	
			1.8 V ± 0.15 V	1	5.9	10.4	1	10.9	1	12.4	
t _{pd}	Α	Υ	2.5 V ± 0.2 V	1	4.2	7.4	1	7.9	1	10	ns
			2.7 V	1	4.2	6.7	1	6.9	1	8.2	
			3.3 V ± 0.3 V	1.5	3.9	5.7	1.5	5.9	1.5	7.2	
		1.5 V	1	8.3	17.8	1	18.3	1	19.8		
			1.8 V ± 0.15 V	1	6.4	12.1	1	12.6	1	14.1	ns
t _{en}	ŌĒ	Υ	2.5 V ± 0.2 V	1	4.6	9.1	1	9.6	1	11.7	
			2.7 V	1	5	8.4	1	8.6	1	10.3	
			3.3 V ± 0.3 V	1.5	4.5	7.4	1.5	7.6	1.5	9.4	
			1.5 V	1	7.2	15.6	1	16.1	1	17.6	
			1.8 V ± 0.15 V	1	5.8	11.6	1	12.1	1	13.6	
t _{dis}	ŌĒ	Y	2.5 V ± 0.2 V	1	3.7	7.3	1	7.8	1	9.9	ns
			2.7 V	1	3.8	6.6	1	6.8	1	8.6	
			3.3 V ± 0.3 V	1.5	3.8	6.3	1.5	6.5	1.5	8	
t _{sk(o)}			3.3 V ± 0.3 V					1		1.5	ns

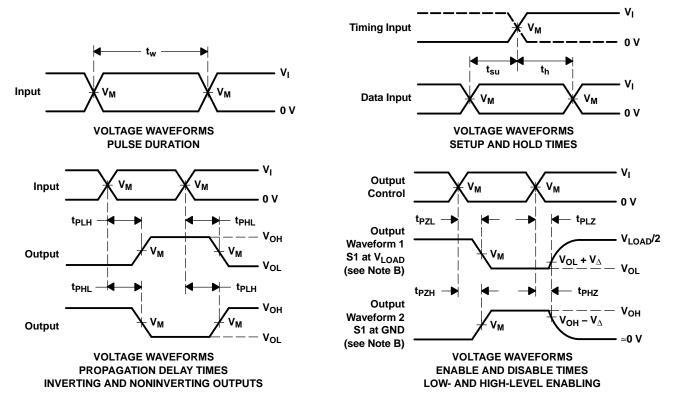
SN74LVC244A OCTAL BUFFER/DRIVER WITH 3-STATE OUTPUTS

SCAS414X-NOVEMBER 1992-REVISED MARCH 2005


Operating Characteristics

 $T_A = 25^{\circ}C$

	PARAMETER	TEST CONDITIONS	V _{cc}	TYP	UNIT	
				1.8 V	43	
	Outputs enabled	f = 10 MHz	2.5 V	43		
C	Dower dissipation conscitance per buffer/driver			3.3 V	44	pF
C_{pd}	Power dissipation capacitance per buffer/driver	Outputs disabled	f = 10 MHz	1.8 V	1	рг
				2.5 V	1	
				3.3 V	2	


PARAMETER MEASUREMENT INFORMATION

TEST	S1
t _{PLH} /t _{PHL}	Open
t _{PLZ} /t _{PZL}	V _{LOAD}
t _{PHZ} /t _{PZH}	GND

LOAD CIRCUIT

V	INPUTS		.,	V	_		V	
V _{CC}	V _I	t _r /t _f	V _M	V _{LOAD}	CL	R _L	V_{Δ}	
1.5 V	V _{CC}	≤2 ns	V _{CC} /2	2×V _{CC}	15 pF	2 k Ω	0.1 V	
1.8 V ± 0.15 V	V _{CC}	≤2 ns	V _{CC} /2	2×V _{CC}	30 pF	1 k Ω	0.15 V	
2.5 V \pm 0.2 V	V _{CC}	≤2 ns	V _{CC} /2	2×V _{CC}	30 pF	500 Ω	0.15 V	
2.7 V	2.7 V	≤2.5 ns	1.5 V	6 V	50 pF	500 Ω	0.3 V	
3.3 V \pm 0.3 V	2.7 V	≤2.5 ns	1.5 V	6 V	50 pF	500 Ω	0.3 V	

- NOTES: A. C_L includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
 - C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, Z_O = 50 Ω.
 - D. The outputs are measured one at a time, with one transition per measurement.
 - E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
 - F. t_{PZL} and t_{PZH} are the same as t_{en}.
 - G. t_{PLH} and t_{PHL} are the same as t_{pd}.
 - H. All parameters and waveforms are not applicable to all devices.

Figure 1. Load Circuit and Voltage Waveforms

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
SN74LVC244ADBLE	OBSOLETE	SSOP	DB	20		TBD	Call TI	Call TI
SN74LVC244ADBR	ACTIVE	SSOP	DB	20	2000	Pb-Free (RoHS)	CU NIPDAU	Level-2-260C-1 YEAR/ Level-1-235C-UNLIM
SN74LVC244ADBRE4	ACTIVE	SSOP	DB	20	2000	Pb-Free (RoHS)	CU NIPDAU	Level-2-260C-1 YEAR/ Level-1-235C-UNLIM
SN74LVC244ADBRG4	ACTIVE	SSOP	DB	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1YEAR
SN74LVC244ADGVR	ACTIVE	TVSOP	DGV	20	2000	Pb-Free (RoHS)	CU NIPDAU	Level-1-250C-UNLIM
SN74LVC244ADGVRE4	ACTIVE	TVSOP	DGV	20	2000	Pb-Free (RoHS)	CU NIPDAU	Level-1-250C-UNLIM
SN74LVC244ADW	ACTIVE	SOIC	DW	20	25	Pb-Free (RoHS)	CU NIPDAU	Level-2-250C-1 YEAR Level-1-235C-UNLIM
SN74LVC244ADWE4	ACTIVE	SOIC	DW	20	25	Pb-Free (RoHS)	CU NIPDAU	Level-2-250C-1 YEAR Level-1-235C-UNLIM
SN74LVC244ADWR	ACTIVE	SOIC	DW	20	2000	Pb-Free (RoHS)	CU NIPDAU	Level-2-250C-1 YEAR/ Level-1-235C-UNLIM
SN74LVC244ADWRE4	ACTIVE	SOIC	DW	20	2000	Pb-Free (RoHS)	CU NIPDAU	Level-2-250C-1 YEAR/ Level-1-235C-UNLIM
SN74LVC244AGQNR	ACTIVE	VFBGA	GQN	20	1000	TBD	SNPB	Level-1-240C-UNLIM
SN74LVC244AN	ACTIVE	PDIP	N	20	20	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
SN74LVC244ANE4	ACTIVE	PDIP	N	20	20	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
SN74LVC244ANSR	ACTIVE	SO	NS	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC244ANSRE4	ACTIVE	SO	NS	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC244APW	ACTIVE	TSSOP	PW	20	70	Pb-Free (RoHS)	CU NIPDAU	Level-1-250C-UNLIM
SN74LVC244APWE4	ACTIVE	TSSOP	PW	20	70	Pb-Free (RoHS)	CU NIPDAU	Level-1-250C-UNLIM
SN74LVC244APWG4	ACTIVE	TSSOP	PW	20	70	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC244APWLE	OBSOLETE	TSSOP	PW	20		TBD	Call TI	Call TI
SN74LVC244APWR	ACTIVE	TSSOP	PW	20	2000	Pb-Free (RoHS)	CU NIPDAU	Level-1-250C-UNLIM
SN74LVC244APWRE4	ACTIVE	TSSOP	PW	20	2000	Pb-Free (RoHS)	CU NIPDAU	Level-1-250C-UNLIM
SN74LVC244APWRG4	ACTIVE	TSSOP	PW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC244APWT	ACTIVE	TSSOP	PW	20	250	Pb-Free (RoHS)	CU NIPDAU	Level-1-250C-UNLIM
SN74LVC244APWTE4	ACTIVE	TSSOP	PW	20	250	Pb-Free (RoHS)	CU NIPDAU	Level-1-250C-UNLIM
SN74LVC244ARGYR	ACTIVE	QFN	RGY	20	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1YEAR
SN74LVC244AZQNR	ACTIVE	VFBGA	ZQN	20	1000	Pb-Free (RoHS)	SNAGCU	Level-1-260C-UNLIM

PACKAGE OPTION ADDENDUM

5-Jul-2005

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

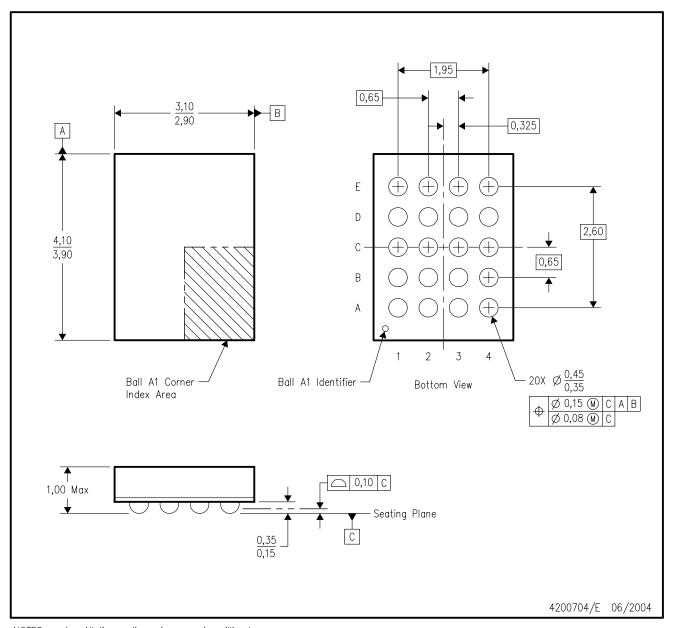
OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

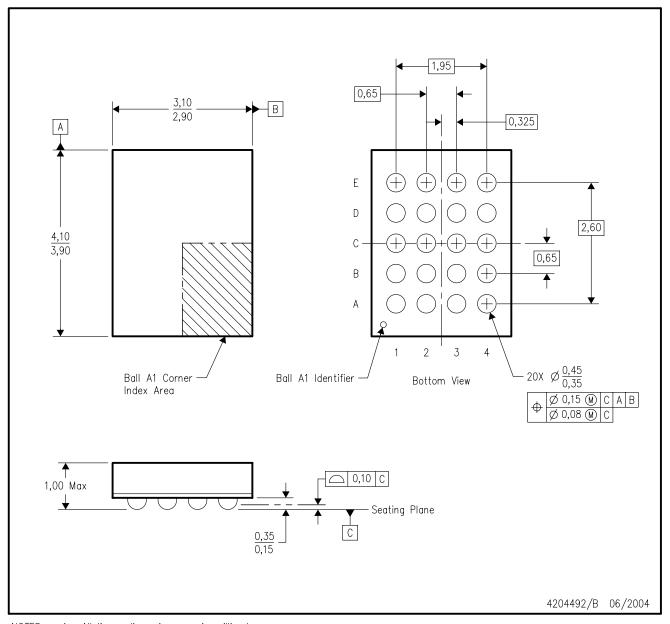

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

GQN (R-PBGA-N20)

PLASTIC BALL GRID ARRAY

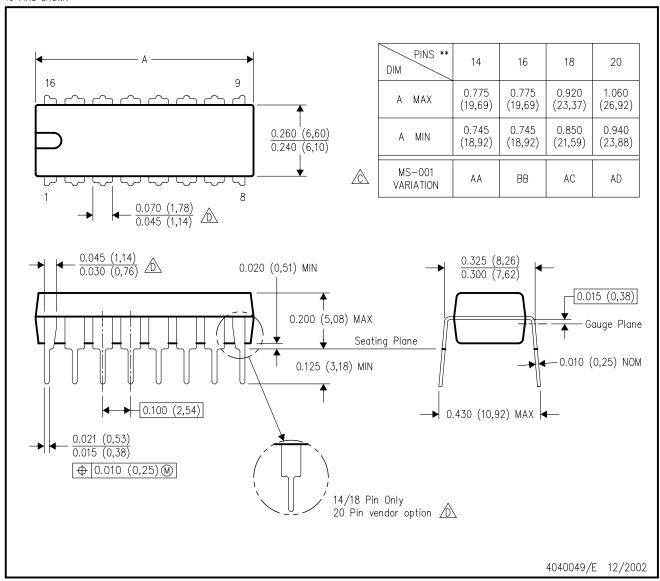

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MO-225 variation BC.
- D. This package is tin-lead (SnPb). Refer to the 20 ZQN package (drawing 4204492) for lead-free.

ZQN (R-PBGA-N20)

PLASTIC BALL GRID ARRAY

NOTES: A. All linear dimensions are in millimeters.

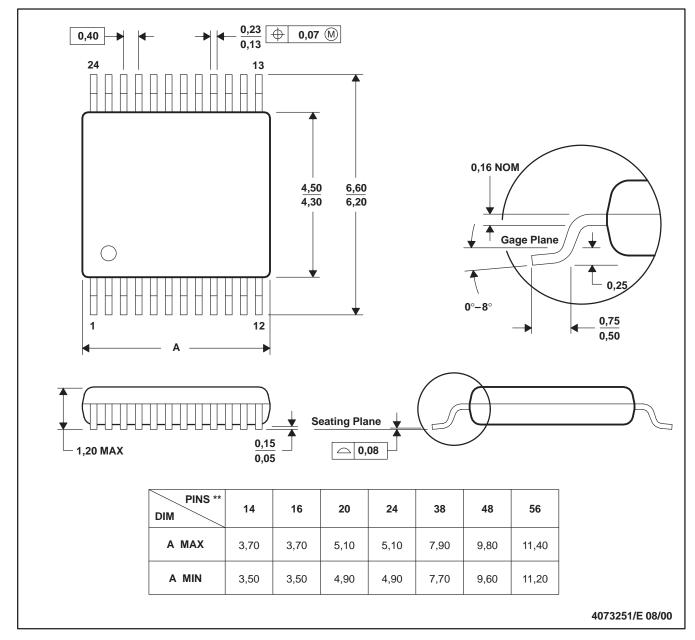

- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MO-225 variation BC.
- D. This package is lead-free. Refer to the 20 GQN package (drawing 4200704) for tin-lead (SnPb).

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

NOTES:

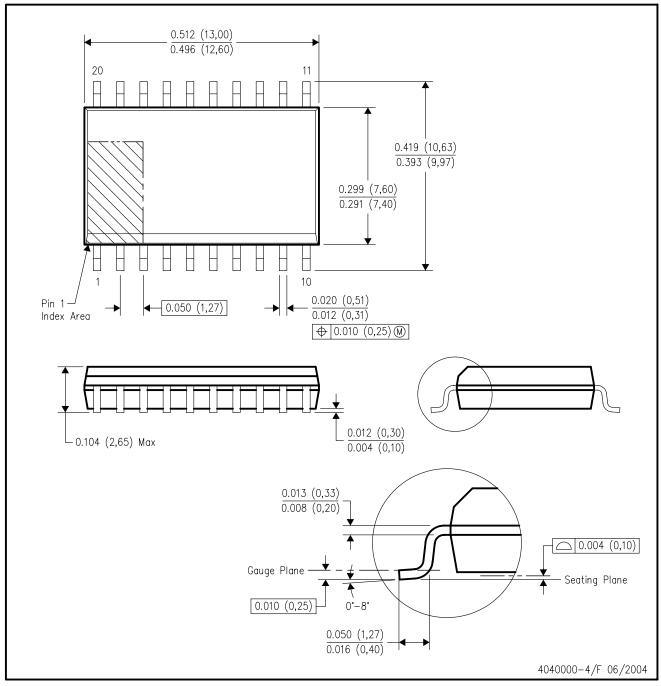

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.

DGV (R-PDSO-G**)

24 PINS SHOWN

PLASTIC SMALL-OUTLINE

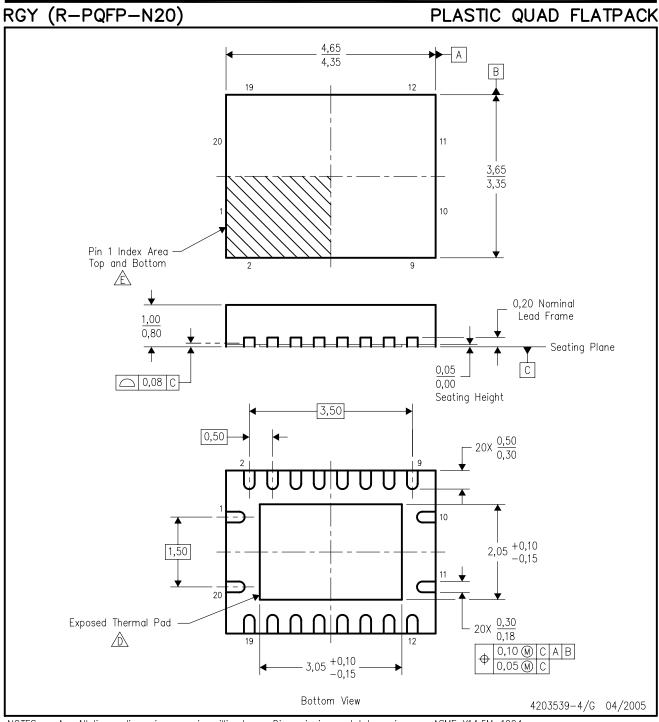
NOTES: A. All linear dimensions are in millimeters.


B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.

D. Falls within JEDEC: 24/48 Pins – MO-153 14/16/20/56 Pins – MO-194

DW (R-PDSO-G20)

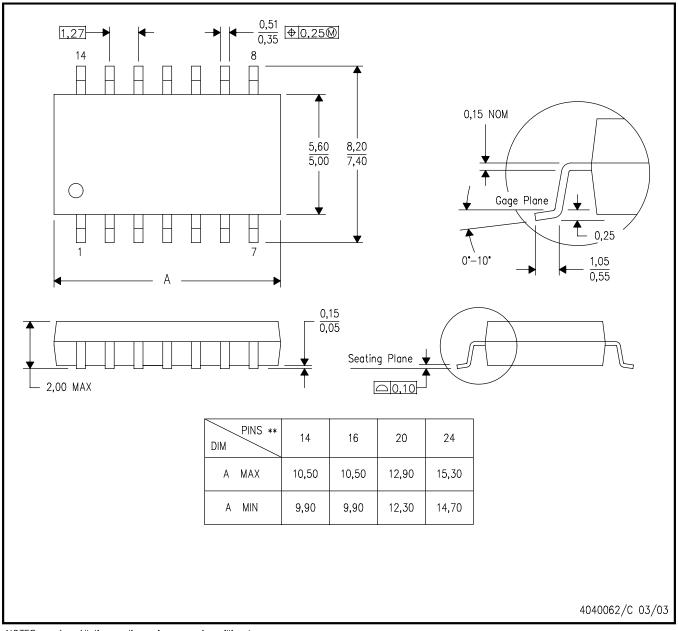

PLASTIC SMALL-OUTLINE PACKAGE

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MS-013 variation AC.

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.

- B. This drawing is subject to change without notice.
- C. QFN (Quad Flatpack No-Lead) package configuration.
- The package thermal pad must be soldered to the board for thermal and mechanical performance.
- Pin 1 identifiers are located on both top and bottom of the package and within the zone indicated. The Pin 1 identifiers are either a molded, marked, or metal feature.
- F. Package complies to JEDEC MO-241 variation BC.



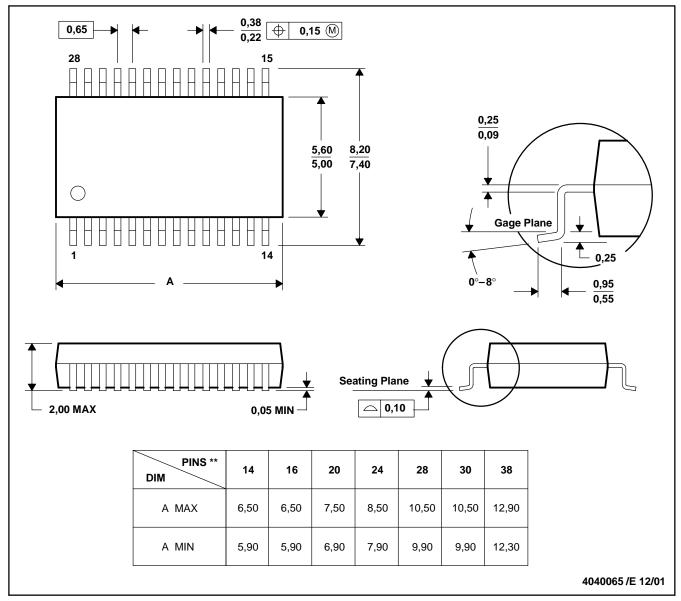
MECHANICAL DATA

NS (R-PDSO-G**)

14-PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

NOTES:


- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

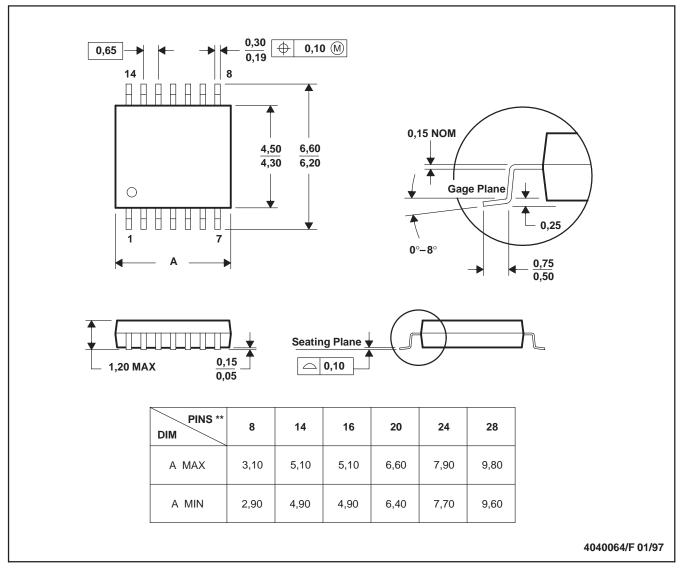
DB (R-PDSO-G**)

PLASTIC SMALL-OUTLINE

28 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.


C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.

D. Falls within JEDEC MO-150

PW (R-PDSO-G**)

14 PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.

D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2005, Texas Instruments Incorporated