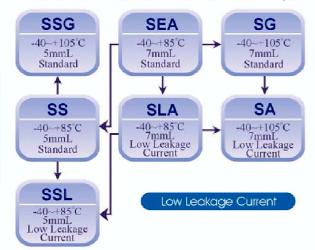
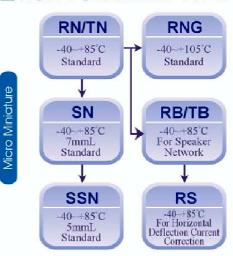
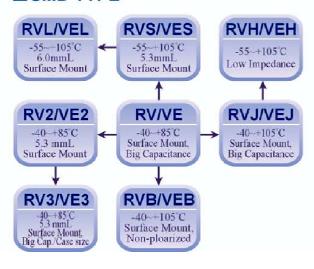
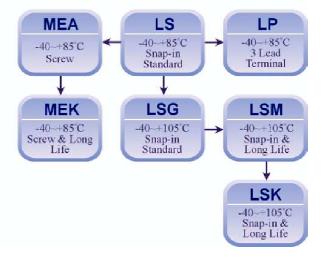

GROUP CHART


■RADIAL / AXIAL LEAD TYPE


Low E.S.R.

■RADIAL / AXIAL LEAD TYPE (7L,5L)


■ NON-POLARIZED TYPE



SMD TYPE

■ LARGE CV / SCREW TYPE

Capacitor Series Table

	Series		Туре	Features	Temperature & Load Life Time	Rated Voltage Range (V, DC)	Capacitance Range(μ F)	Sleeve Color	Page
		REA	04	General	85°C, 2000~3000 Hrs	6.3 ~ 450	$0.1 \sim 22000$	Blue	11
		RG	04	General, 105°C	105°C, 1000 Hrs	6.3 ~ 450	0.1 ~ 22000	Green	14
	General Purpose	RGA	04	General, 105°C	105°C, 2000 Hrs	6.3 ~ 450	0.1 ~ 22000	Green	14
		RUA	04	General, 125°C	125°C, 2000 Hrs	10 ~ 63	0.47 ~ 1000	Black	17
		RJ	04	Wide Temperature Range, Anti-solvent	105°C, 1000 Hrs	6.3 ~ 63	0.1 ~ 4700	Dark Blue	18
e	High Reliability	RJA	04	Wide Temperature Range, Anti-solvent	105°C, 2000 Hrs	6.3 ~ 63	0.1 ~ 4700	Dark Blue	18
Standard Radial Type		RXJ	04	High Reliability	105°C, 2000~5000 Hrs	6.3 ~ 100	1 ~ 4700	Brown	20
1 T	Low	RXK	04	High Reliability, Downsize	105°C, 2000~5000 Hrs	6.3 ~ 63	12 ~ 6800	Black	23
lia	Impedance/High	RXW	04	Low Impedance, High Reliability	105°C, 3000~6000 Hrs	6.3 ~ 100	4.7 ~ 15000	Black	26
ξaς	Reliability	RZF	04		105°C, 3000~10000 Hrs		27 ~ 6800	Black	30
d F	**** *	RXA	04	High Reliability, Long Life Ultra Low Impedance	· · · · · · · · · · · · · · · · · · ·	6.3 ~ 35	27 ~ 6800	Dark Green	32
lar	Ultra Low	RXH	04	Ultra Low Impedance, High Reliability	105°C, 2000~4000 Hrs	6.3 ~ 50	47 ~ 8200	Black	34
anc	Impedance (Design for M/B)			Super Ultra Low Impedance	105°C, 3000~5000 Hrs	6.3 ~ 35			_
Sta	(Design for M/D)	RXZ	04	· · · · · · · · · · · · · · · · · · ·	105°C, 2000 Hrs	6.3 ~ 16	470 ~ 3300	Black	36
	High Reliability	RXC	04	High Ripple Current, High Voltage	105°C, 2000~3000 Hrs	160 ~ 450	2.2 ~ 330	Brown	37
		RXB	04	High Ripple Current, Downsize, High Voltage	105°C, 5000 Hrs	160 ~ 450	2.2 ~ 330	Brown	39
	Low Leakage	RL	04	Low Leakage Current	85°C, 1000 Hrs	6.3 ~ 100	0.1 ~ 4700	Orange	40
	Current	RLA	04	Low Leakage Current	85°C, 2000 Hrs	6.3 ~ 100	0.1 ~ 4700	Orange	40
		RA	04	Low Leakage Current, 105°C	105°C, 1000 Hrs	6.3 ~ 100	0.1 ~ 4700	Purple	42
		SE	04	7 mmL, General	85°C, 1000 Hrs	4 ~ 63	0.1 ~ 470	Blue	44
မ	General Purpose	SEA	04	7 mmL, General	85°C, 2000 Hrs	4 ~ 63	0.1 ~ 470	Blue	44
Miniature Type		SG	04	7 mmL, General, 105°C	105°C, 1000 Hrs	4 ~ 63	0.1 ~ 330	Green	45
Ĺ	Low Leakage	SL	04	7 mmL, Low Leakage Current	85°C, 1000 Hrs	4 ~ 63	0.1 ~ 100	Orange	46
l re	Current	SLA	04	7 mmL, Low Leakage Current	85°C, 2000 Hrs	4 ~ 63	0.1 ~ 100	Orange	46
atı	Current	SA	04	7 mmL, Low Leakage Current, 105°C	105°C, 1000 Hrs	4 ~ 63	0.1 ~ 100	Purple	47
12.	Man Maistern	SS	04	5 mmL, General	85°C, 1000 Hrs	4 ~ 50	0.1 ~ 220	Black	48
$ \Sigma $	Micro Miniature Size	SSG	04	5 mmL, General, 105°C	105°C, 1000 Hrs	4 ~ 50	0.1 ~ 220	Dark Green	49
	Size	SSL	04	5 mmL, Low Leakage Current	85°C, 1000 Hrs	4 ~ 50	0.1 ~ 100	Orange	50
မ		RN	04	Non-polarized	85°C, 2000 Hrs	6.3 ~ 250	0.1 ~ 2200	Yellow	51
Type		RNG	04	Non-polarized, 105°C	105°C, 2000 Hrs	6.3 ~ 250	0.1 ~ 2200	Yellow	53
Ė	Non-Polarized	SN	04	7 mmL, Non-polarized	85°C, 1000 Hrs	4 ~ 63	0.1 ~ 100	Yellow	55
& Bi-polarized		SSN	04	5 mmL, Non-polarized	85°C, 1000 Hrs	4 ~ 50	0.1 ~ 47	Yellow	56
ıri		RB	04	Bi-polarized for Speaker Network	85°C, 2000 Hrs	50, 100	0.47 ~ 68	Orange	57
ola		RBS	04	RB Downsized	85°C, 2000 Hrs	50, 100	0.47 ~ 68	Orange	57
-j		RBL	04	Larger than RB	85°C, 2000 Hrs	50, 100	0.47 ~ 68	Orange	57
Bi	Bi-Polarized	RBG	04	Bi-polarized for Speaker Network, 105°C	105°C, 2000 Hrs	50, 100	0.47 ~ 68	Orange	58
	Di i dimizeu	RBK	04	RBG Downsized	105°C, 2000 Hrs	50, 100	0.47 ~ 68	Orange	58
n.		RS	04	Bi-polarized, for Horizontal	85°C, 2000 Hrs	50	1~10	Orange	59
Non.		RSG	04	Deflection Circuit of TV Sets	105°C, 2000 Hrs	50	1 ~ 10	Orange	59
		TEA	02	General	85°C, 2000 Hrs	6.3 ~ 450	0.1 ~ 22000	Blue	60
J. dy	General Purpose	TG	02	General, 105°C	105°C, 1000 Hrs	6.3 ~ 450	0.1 ~ 22000	Green	62
]_ []	I am I aslasas		02	Low Leakage Current	,				64
Axial Type	Low Leakage Current	TL		<u> </u>	85°C, 1000 Hrs	6.3 ~ 100	0.1 ~ 4700	Orange	
		TLA		Low Leakage Current	85°C, 2000 Hrs	6.3 ~ 100	0.1 ~ 4700	Orange	64
Standard	Non-Polarized	TN	02	Non-polarized	85°C, 1000 Hrs	6.3 ~ 100	0.1 ~ 2200	Yellow	66
tan	Bi-Polarized	TB	02	Bi-polarized, High Frequency	85°C, 1000 Hrs	50	0.47 ~ 68	Orange	67
S		TBL	02	Bi-polarized, Low Leakage Current	85°C, 1000 Hrs	50	0.47 ~ 68	Orange	67
	0 15	LP	04	Prong Terminal	85°C, 2000 Hrs	6.3 ~ 250	150 ~ 33000	Black	68
pe	General Purpose	LS	69	Snap-in	85°C, 2000 Hrs	16 ~ 450	56 ~ 22000	Black	70
Large Sized		LSG	69	Snap-in for TV & Monitor	105°C, 2000 Hrs	16 ~ 450	56 ~ 22000	Brown	74
(A)	Long Life	LSM	69	Snap-In/Long Life, for Power	105°C, 3000 Hrs	16 ~ 450	47 ~ 22000	Black	78
rg		LSK	69	Snap-In/ Long Life, for Power	105°C, 5000 Hrs	200 ~ 450	39 ~ 1200	Black	81
La	Screwed Type	MEA	33	Screw Terminal, Genernal	85°C, 2000 Hrs	10 ~ 450	270 ~ 680000	Black	83
	Screwed Type	MEK	33	Screw Terminal, Long Life	85°C, 5000 Hrs	350 ~ 450	1000 ~ 12000	Black	86
	Photo Flash	RF	04	Photo Flash	55°C, 5000 Times	330		Black	88
		RV/VE	32	Miniaturized, Big Capacitance	85°C, 2000 Hrs	6.3 ~ 100	10 ~ 1000		92
		RV2/VE2	32	Miniaturized	85°C, 2000 Hrs	4 ~ 50	0.1 ~ 220		93
		RV3/VE3	32	Big Capacitance, Large Size	85°C, 2000 Hrs	6.3 ~ 50	4.7 ~ 330		94
T.	Chin True	RVS/VES	32	Miniaturized, 105°C	105°C, 1000 Hrs	6.3 ~ 50	0.1 ~ 100		95
	Chip Type	RVL/VEL	32	Long Life, 105°C, 6.0mmL	105°C, 2000 Hrs	6.3 ~ 50	0.1 ~ 100		96
the			_			6.3 ~ 50	0.1 ~ 47		97
Others		RVB/VEB	32	Bi-polarized	85°C, 2000 Hrs	0.5 ~ 50	0.1~4/		21
Othe		RVB/VEB RVJ/VEJ	32	Bi-polarized Long Life, 105°C	105°C, 2000 Hrs	6.3 ~ 100	10 ~ 470		98
Othe				•					_

Guidelines for Aluminum Electrolytic Capacitors

1. Guidelines for Circuit design

(1) Polarity

DC electrolytic capacitors are polarized. Make sure of the polarity, if used in reverse polarity, the circuit life may be shortened or the capacitor may be damaged. Where the polarity in a circuit sometimes reversed or unknown, a bi-polar capacitor should be used. Also, note that DC electrolytic capacitors cannot be used for AC application. Reverse voltage 1 volt acceptable within specified temperature and working voltage.

(2) Applying Voltage

The combined voltage of D.C. and A.C. peak voltage shall not exceed the rated voltage of the capacitor and shall not be reverse voltage. If a voltage exceeding the capacitor's voltage rating is applied, the capacitor may be damaged as leakage current increase. Using capacitors at recommended working voltage prolongs capacitor life.

(3) Ripple Current

- 1) Do not apply a ripple current exceeding the rated maximum ripple current. When an excessive ripple current passes, the capacitor may be damaged with the vent operating, etc. Use the electrolytic capacitor within the permissible ripple range current at specified frequency and temperature.
- 2) The temperature coefficient shows the limit of ripple current exceeding the rated ripple current that can be applied to the capacitor at the temperature. The expected life of a capacitor is nearly equal to the lifetime at the upper category temperature.

(4) Operating Temperature

Use the electrolytic capacitors according to the specified operating temperature range. Usage at room ambient will ensure longer life.

(5) Leakage Current

The leakage current shall be within specified levels. When capacitors are applied at a lower voltage, the actual leakage current will be reduced proportionately.

(6) Charge and Discharge

The electrolytic capacitor is not suitable for a circuit in which charge and discharge are frequently repeated. The capacitance value may drop by forming oxide layer on the cathode foil, or the capacitor may be damaged by generating heat due to continuous rapid charge and discharge.

(7) Surge Voltage

The surge voltage rating is the maximum DC over-voltage to which the capacitors may be subjected of short periods not exceeding approximately 30 seconds at infrequent intervals of not more than 5.5minutes. Unless otherwise specified, the rated surge voltages of the electrolytic capacitors are as follows:

Rated Voltage(V)	4	6.3	10	16	25	35	40	50	63	80	100	160	200	250	350	400	450
Surge Voltage(V)	5	8	13	20	32	44	50	63	79	100	125	200	250	300	400	450	500

(8) Condition of Use

 The capacitors shall not be exposed to water, saltwater spray, oil or fumes, high humidity or humidity condensation.

- Ambient conditions that include hazardous gases such as hydrogen sulfide, sulfurous acid, nitrous acid, chlorine or bromine gas, ammonia, etc.
- 3) Exposed to ozone, ultraviolet rays and radiation.
- 4) Severe vibration or physical shock that exceeds the condition in specification sheets.

(9) Consideration to Circuit Design

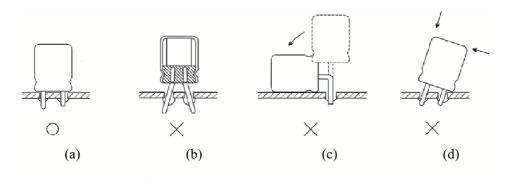
- 1) Do not design a circuit board so that heat-generating components are places near an aluminum electrolytic capacitor or reverse side of PC board. A cooling system is recommended. And for the high water-content electrolyte series (RXA, RXH, RXZ), we strongly recommended a well cooling system is needed.
- 2) Performances of electrical characteristics of aluminum electrolytic capacitors are affected by variation of operating temperature and frequency. Consider this variation designing the circuit.
- 3) When two or more aluminum capacitors are connected in parallel, consider the current balance that flow through the capacitors.
- 4) If more than two capacitors are connected in series, make sure the applied voltage will be lower than the rated voltage and that voltage will be applied to each equally using a balancing resistor in parallel with each capacitor.

2. Caution for Assembling Capacitors

(1) Mounting

- 1) Aluminum electrolytic capacitors cannot be re-used once the capacitor has assembled in the set and power applied.
- 2) Aluminum electrolytic capacitors may have electrical potential between positive and negative terminal, please discharge through a $1 \text{k}\Omega$ resistor before use.
- 3) Leakage current of Aluminum electrolytic capacitors may be increased after storage a long period of time. For the high water content electrolytic series (RXA, RXH, RXZ), we strongly recommend that the capacitors shall be used within one year after shipping. When leakage current has increased, please perform a voltage treatment before use.

Voltage treatment:


The capacitors shall be applied with D.C. rated voltage through a resistor of $1k\Omega$ in series for one hour, and then discharge through a resistor of $1k\Omega$. When the capacitors have been assembled in the board, using a volt regulator to input voltage gradually to the rated volt of the board.

- 4) Please confirm the rated voltage before mounting.
- 5) Please confirm the polarity before mounting.
- 6) Do not use the capacitor that once dropped on the hard floor.
- 7) Do not damage the capacitor while mounting.
- 8) Capacitors shall be mounted that hold spacing on PC board matches the lead pitch of the capacitors.
- 9) During the auto-insertion process and parts inspection, capacitors shall avoid the excessive force and shock.
- 10) Do not design to locate any wiring or circuit around the capacitor's pressure relief vent. The following clearance should be made above the pressure relief vent. The pressure relief vent will not open without the appropriate free space.

Case Diameter	φ 6.3~16	ψ 18~35	ϕ 40 or more
Clearance (min)	2mm	3mm	5mm

(2) Soldering

- 1) Be careful of temperature and time when soldering. Dip of flow soldering of the capacitors should be limited at less than 260°C and 10 seconds. Do not dip capacitor's body into melted solder.
- 2) High humidity will affect the solder ability of lead wire and terminals. High temperature will reduce long-term operating life.
- 3) Standard Aluminum electrolytic capacitors cannot withstand more than two reflow processes. Please consult our engineering department when needed.
- 4) Following defective soldering affect the inside characteristics, such as increasing leakage current, short circuit, broken or wound of lead wires, and leaking electrolyte. Do not bend or twist the capacitor's body after soldering on PC board.
 - (a) Parts slant to the board after soldering.
 - (b) Leads are greatly bent after soldering.
 - (c) Lead space on board differs from the original.
 - (d) Exact soldering.

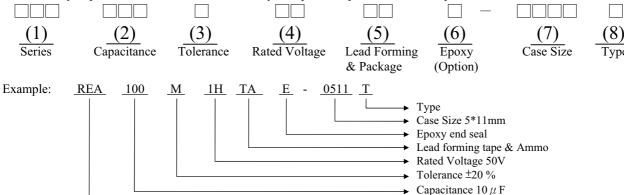
(3) Cleaning Circuit Boards After Soldering

Halogenated solvent cleaning are not available for Al. electrolytic capacitors, please consult our engineering department for the halogenated clearing agents.

3. Maintenance Inspection

Periodical inspection is necessary for using the aluminum capacitors with industrial equipment. The following items should be checked:

- (1) Appearance: Vent operation, leaking electrolyte, etc.
- (2) Electrical characteristic: Capacitance, dissipation factor, leakage current, and other specified items listed in specification.


4. Storage

- (1) Aluminum electrolytic capacitor should not be stored in high temperature or high humidity condition. The suitable condition is 5° C -35 $^{\circ}$ C and less than 75% in relative humidity indoor.
- (2) Do not store the capacitors in damp conditions such as water, brine or oil.
- (3) Do not store the capacitors that exposed to hazardous gas such as hydrogen sulfide, sulfurous acid, nitrous acid, chlorine, ammonium, etc.
- (4) Do not store the capacitors that exposed to ozone, ultraviolet rays or radiation.

Part Numbering System I

When you place an order for LELON electrolytic capacitors, please refer to our part number as shown below.

(1) Series:

Series is represented by a two or three digit code. If there are 2 digits only for series code, keep blank on the third digit.

REA Series

(2) Capacitance:

Rated capacitance in μ F is represented by a three digit number. The first two digits are the significant figures of the nominal capacitance and the third digit indicates the number of zeros following these figures. The decimal point is represented by the capital letter R. Please refer to the following example:

μ F	0.1	0.47	1	4.7	10	47	100	470	1000	4700	10000
Part number	0R1	R47	010	4R7	100	470	101	471	102	472	103

(3) Tolerance:

Symbol of W, T, Q, V, M, K and J show special capacitance tolerance which are listed as follows:

$W = -10\% \sim +100\%$	M= -20% ~ +20%
$T = -10\% \sim +50\%$	$K = -10\% \sim +10\%$
$Q = -10\% \sim +30\%$	J = -5% ~ +5%
V = -10% ~ +20%	

(4) Rated Voltage:

Voltage on volts(V) is represented by two digit code showing the real working voltage indicated as follows:

U	` /			-		_			_			_	•					
Voltage (WV)	4	6.3	10	16	25	35	40	50	63	80	100	160	200	250	330	350	400	450
Code	0G	0J	1A	1C	1E	1V	1G	1H	1J	1K	2A	2C	2D	2E	2M	2V	2G	2W

(5) Lead Forming and Package:

The terminal processing and package method represented by two capital letters. Please specify as indicated to the following signs:

FF = Lead Forming & Loose Package	TA = Lead Forming Tape & Ammo Package
CC = Lead Cutting & Loose Package	TR = Lead Forming Tape & Reel Package
FC = Lead Forming & Cutting & Loose Package	SA = Straight Lead Tape & Ammo Package
SC = Snap-in & Cutting & Loose Package	SR = Straight Lead Tape & Reel Package
SF = Snap-in & Forming Cutting & Loose Package	BK = Bulk Package
SD = Cathode Lead Bending	BC = Bending & Cutting

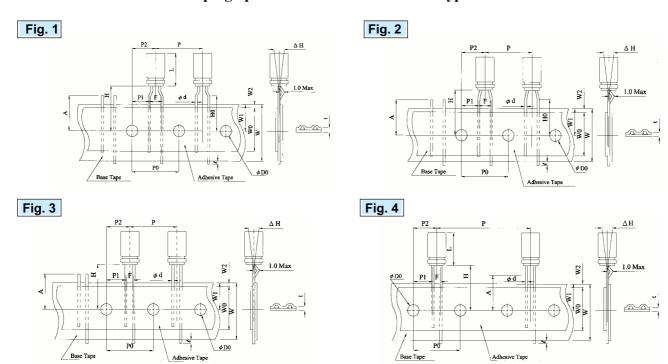
^{*} If there is none ,can be emitted or written in "-"

(6) Epoxy:

Designated capital letter as "E". if there is none, can be omitted or written in "-". Lug terminal is "LU".

(7) Case Size:

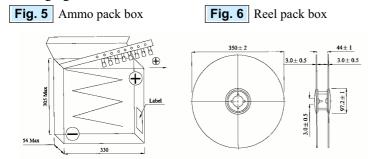
The first two digits indicate in mm. The last two digits indicate case length in mm.


You can omit this if it is very common.

(8) Type:

<u> </u>	
N =Lead free wire+PVC sleeve	V = Lead free wire +Al case coated PET
P = Lead free wire +PET sleeve	T = Lead wire +PET sleeve
Space = Lead wire +PVC sleeve	A = Terminal length 4.0mm for Snap-in (6.3mm is space)
F = Flat rubber bung	

Taping Specification For Radial Lead Type



Unit: mm

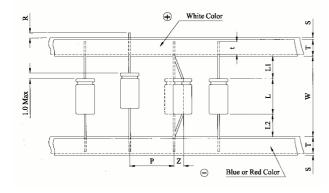
Packing	IA										;	SA					
/ T	5	7~9	≥11				5			≥7		7~9	11.5~20		≥12.5		2.5
Symbol φ D	3 4* 5 6.3 8	5 6.3 8*	5 6.3	8	3	4*	5	6.3	8	5	6.3	8	8	Tol.	10	12.5	Tol.
φ d	0.45	0.5	0.5	0.6	(0.45		0.45	0.45	0.5	0.5	0.5	0.6	±0.05	0.6	0.6	±0.05
F	5.0	5.0	5.0	5		2.5		2.5	2.5	2.5	2.5	3.5	3.5	+0.8/-0.2	5.0	5.0	+0.8/-0.2
Н	17.5	17.5	18.5	20.0	1	17.5		17.5	17.5	17.5	17.5	17.5	18.5	±0.75	18.5	18.5	±0.75
H0	16.0	16.0	16.0							-		ł		±0.5			±0.5
P	12.7	12.7	12.7		1	12.7		12.7	12.7	12.7	12.7	12.7	12.7	±1.0	12.7	25.4	±1.0
P0	12.7	12.7	12.7		1	12.7		12.7	12.7	12.7	12.7	12.7	12.7	±0.2	12.7	12.7	±0.2
P1	3.85	3.85	3.85			5.1		5.1	5.1	5.1	5.1	4.6	4.6	±0.5	3.85	3.85	±0.7
P2	6.35	6.35	6.35		6	6.35		6.35	6.35	6.35	6.35	6.35	6.35	±1.0	6.35	6.35	±1.3
W	18.0	18.0	18.0		1	18.0		18.0	18.0	18.0	18.0	18.0	18.0	±0.5	18.0	18.0	±0.5
W0	6.0	10.0	10.0			6.0		6.0	6.0	10.0	10.0	12.0	12.0	Min	12.0	12.0	Min
W1	9.0	9.0	9.0			9.0		9.0	9.0	9.0	9.0	9.0	9.0	±0.5	9.0	9.0	±0.5
W2	1.5	1.5	1.5			1.5		1.5	1.5	1.5	1.5	1.5	1.5	Max	1.5	1.5	Max
A	11.0	11.0	11.0		1	11.0		11.0	11.0	11.0	11.0	11.0	11.0	Max	11.0	11.0	Max
$\varphi \mathbf{D} 0$	4.0	4.0	4.0			4.0		4.0	4.0	4.0	4.0	4.0	4.0	±0.2	4.0	4.0	±0.2
ΔH	0	0	0			0		0	0	0	0	0	0	±1.0	0	0	±1.0
1	1.0	1.0	1.0			1.0		1.0	1.0	1.0	1.0	1.0	1.0	Max	1.0	1.0	Max
t	0.7	0.7	0.7			0.7		0.7	0.7	0.7	0.7	0.7	0.7	±0.2	0.7	0.7	±0.2
Fig. No.	1	1	1			2		3	3	2	3	3	3		3	4	

^{*1.} For φ D=10, H=20.0±0.5 is available, in this case, the dimensions of H is not specified.

Packaging

Packaging Quantity

φ D	3	4	5	6.3	8	10	12.5
TA, SA	3000	2000	2000	2000	1000	500	250
TR, SR	3000	1500	1200	1000	800	500	500


Note:The component shall be oriented on the tape as such that the positive lead is leading or the negative lead is leading with customer's request.

^{2. 4} φ in mark of "*" is 4 φ ×7L the same spec. "SA" packing :5~6.3 φ ×11L in H is 18.5mm.

Taping Specification For Axial Lead Type

Taping Specification

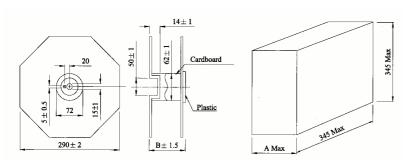
Fig. 7

Notes:

This specification conforms with EIA standard RS-296-D

- 1. Taping
 - 1-1 Case diameters 5mm to 10mm can be supplied taped & reeled.
 - 1-2 Unless otherwise specified, the cathode tape shall be coloured and the anode tape shall be white.
 - 1-3 A minimum 300 mm leader tape shall be provided before the first and after the last capacitor on the
 - 1-4 Dimensions are shown in Fig. 7.

2. Packing


- 2-1 Taped capacitors shall be wound on a reel shown in Fig. 8.
- 2-2 Kraft paper shall be wound between layers of capacitors for capacitor protection.
- 2-3 After winding the taped capacitors on the reel, a single sided corrugated cardboard strip shall be wound over the capacitors (on wrap).

Unit: mm

I	$\mathbf{D} \varphi$	W±	W±1.5 P		L1-L2	Z	R	T	t	S
l	Dφ	L≦16	L>16	±0.5	L1-L2	Max	Max	±1.0	Min	Max
ĺ	5	52		10	±1.5	1.2	2	6.0	3.2	0.8
	6.3	52	63	10	±1.5	1.2	2	6.0	3.2	0.8
	8	63	73	10	±1.5	1.2	2	6.0	3.2	0.8
	10	63	73	15	±1.5	1.2	2	6.0	3.2	0.8

Packaging

Quantity of packaging

ĺ	φ D	5	6.3	8	10
	Q'ty	1200	1000	750	300

Box dimension			Unit: mm	
W	52	63	73	83
В	70	82	92	102
A	85	97	107	117

Lead Forming & Cutting Specification

Radial Type Unit: mm

Forming Method	Code	Shape	Dimensions
Forming Cut $(4 \varphi \sim 8 \varphi)$	FC	5 ± 0.5	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Cut $(3 \varphi \sim 25 \varphi)$	CC	D D D D D D D D D D D D D D D D D D D	8 × 7~9 0.5 3.5 5.0 5.0 8 × 11.5~20 0.6 3.5 5.0 5.0 10 0.6 5.0 4.5 12.5 0.6 5.0 4.5 16 0.8 7.5 4.5 18 0.8 7.5 4.5 22 1.0 10.0 4.5 25 1.0 12.5 4.5
Snap-in Forming Cut $(4 \varphi \sim 8 \varphi)$	SF	O S H12+1.0 H1 ± 0.5 H1 ± 0.5 H3 Max	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
Snap-in Cut $(10 \varphi \sim 25 \varphi)$	SC	D 0.5 H2+1.0 H1 ± 0.5 H2	10 0.6 4.5 2.5 5.0 1.2 1.1 12.5 0.6 4.5 2.5 5.0 1.2 1.1 16 0.8 4.5 2.5 7.5 1.2 1.1 18 0.8 4.5 2.5 7.5 1.2 1.1 22 1.0 4.5 2.5 10.0 1.2 1.3 25 1.0 4.5 2.5 12.5 1.2 1.3
Bending Cut $(5 \varphi \sim 25 \varphi)$	ВС	1.5±0.5	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Cathode Lead Bending $(10 \varphi \sim 25 \varphi)$	SD	1.3 Max 3.7±0.5 By C2	12.5 0.6 5.0 16 0.8 7.5 18 0.8 7.5 22 1.0 10.0 25 1.0 12.5