

Vishay Beyschlag

Precision MELF Resistors

MMU 0102, MMA 0204 and MMB 0207 precision thin film melf resistors combine the proven reliability of the professional products with an advanced level of precision and stability. Therefore they are perfectly suited for applications in the fields of test and measuring equipment along with industrial and medical electronics.

FEATURES

- Approved according to EN 140401-803
- · Advanced thin film technology
- Superior stability: Class 0.05
- Wide precision range: 10 Ω to 1 M Ω
- Green product, supports lead-free soldering.

APPLICATIONS

- · Test and measuring equipment
- · Industrial and medical electronics.

METRIC SIZE							
DIN:	0102	0204	0207				
CECC:	RC 2211M	RC 3715M	RC 6123M				

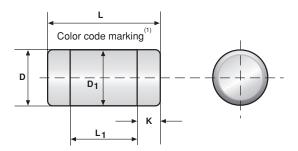
DESCRIPTION	NANA	U 0102	NANA	A 0204	ВЛВЛ	B 0207	
Metric CECC size		2211 M		3715 M		123 M	
Resistance range	22 Ω to	o 332 kΩ	10 Ω to	511 kΩ	15 Ω 1	to 1 MΩ	
Resistance tolerance		± 0.5 %; ± 0.	25 %; ± 0.1 %		± 0.25 %	%; ± 0.1 %	
Temperature coefficient			± 25 ppm/k	K; ± 15 ppm/K			
Operation mode	precision	standard	precision	standard	precision	standard	
Climatic category (LCT/UCT/days)	10/85/56	55/125/56	10/85/56	55/125/56	10/85/56	55/125/56	
Rated dissipation, P ₇₀ ⁽¹⁾	0.06 W	0.2 W	0.07 W	0.25 W	0.11 W	0.4 W	
Operating voltage, U _{max} AC/DC	15	50 V	200 V		300 V		
Film temperature	85 °C	125 °C	85 °C	125 °C	85 °C	125 °C	
Max. resistance change at P_{70} for resistance range, $\Delta R/R$ max., after:	22 Ω to	o 332 kΩ	10 Ω to 511 kΩ		15 Ω to 1 MΩ		
1000 h	≤ 0.05 %	≤ 0.1 %	≤ 0.05 %	≤ 0.1 %	≤ 0.05 %	≤ 0.1 %	
8000 h	≤ 0.1 %	≤ 0.2 %	≤ 0.1 %	≤ 0.2 %	≤ 0.1 %	≤ 0.2 %	
225000 h	≤ 0.3 %	≤ 0.6 %	≤ 0.3 %	≤ 0.6 %	≤ 0.3 %	≤ 0.6 %	
Specified lifetime	225	000 h	225 000 h		225 000 h		
Permissible voltage against ambient (insulation):							
1 minute, U _{ins}	200 V		300 V		500 V		
continuous	7	5 V	7	75 V		75 V	
Failure rate	< 20	× 10 ⁻⁹ /h	≤ 0.7 × 10 ⁻⁹ /h		≤ 0.7 × 10 ⁻⁹ /h		

Note

^{1.} The power dissipation on the resistor generates a temperature rise against the local ambient, depending on the heatflow support of the printed-circuit board (thermal resistance). The rated dissipation applies only if the permitted film temperature is not exceeded.

Vishay Beyschlag

Precision MELF Resistors



ORDER	ORDERING INFORMATION - type description and ordering code									
М	М	Α	0204	-25	0.1 %	BL	47 K			
FILM TYPE	PRODUCT CODE	SIZE CODE	DIN SIZE	TEMPERATURE COEFFICIENT	TOLERANCE	PACKAGING ⁽¹⁾	RESISTANCE VALUE			
M = metal	M = MELF	U = 0102	0102	± 15 ppm/K	± 0.1 %	B1 = 1000 units	See Temperature			
	cylindrical	A = 0204	0204	± 25 ppm/K	± 0.25 %	B2 = 2000 units	Coefficient and			
		B = 0207	0207		± 0.5 %	BL = 3000 units	Resistance Range			
						B7 = 7000 units	Table			
						B0 = 10000 units				
						M3 = 3000 units (bulk case)				
						M8 = 8000 units (bulk case)				

Note: We recommend that the clear text ordering code is used to minimize the possibilty of errors in order handling.

1. Availability in accordance with 12NC ordering code table at the end of this datasheet.

DIMENSIONS

DIMENSIONS - MELF resistor types, mass and relevant physical dimensions								
TYPE	TYPE L D L _{1 min} D ₁ (mm) (mm)				K (mm)	MASS (mg)		
MMU 0102	2.2 + 0/-0.1	1.1 + 0/-0.1	1.2	D + 0/-0.1	0.4 ± 0.05	7		
MMA 0204	3.6 + 0/-0.2	1.4 + 0/-0.1	1.8	D + 0/-0.15	0.8 ± 0.1	19		
MMB 0207	5.8 + 0/-0.2	2.2 + 0/-0.2	2.8	D + 0/-0.2	1.25 ± 0.15	79		

Note

1. Color code marking is applied according to IEC 60062 in five bands. Each color band appears as a single solid line, voids are permissible if at least 2/3 of the band is visible from each radial angle of view. The last color band for tolerance is approx, 50 % wider than the other bands. An interrupted band between the 4rd and 5th full band identifies the temperature coefficient.

TEMPERATURE COEFFICIENT AND RESISTANCE RANGE						
DESC	RIPTION		RESISTANCE VALUE(1)			
T.C.	T.C. TOLERANCE		MMA 0204	MMB 0207		
± 25 nnm/k	± 0.25 %	47 Ω to 332 kΩ	22 Ω to 511 kΩ	15 Ω to 1 MΩ		
± 25 ppm/K	± 0.1 %	100 Ω to 221 kΩ	43 Ω to 511 kΩ	33 Ω to 1 MΩ		
	± 0.5 %	22 Ω to 100 kΩ	10 Ω to 332 kΩ	-		
± 15 ppm/K	± 0.25 %	47 Ω to 100 kΩ	22 Ω to 332 kΩ	-		
	± 0.1 %	100 Ω to 100 kΩ	43 Ω to 332 kΩ	33 Ω to 1 MΩ		

Note

1. Resistance values to be selected from E24 and E192 series, for other values please contact the factory.

Precision MELF Resistors

Vishay Beyschlag

DESCRIPTION

Production is strictly controlled and follows an extensive set instructions established for reproducibility. homogeneous film of metal alloy is deposited on a high grade ceramic body (85 % Al₂O₃, for MICRO-MELF: 96 % Al₂O₃) and conditioned to achieve the desired temperature coefficient. Nickel plated steel termination caps are firmly pressed on the metallised rods. A special laser is used to achieve the target value by smoothly cutting a helical groove in the resistive layer without damaging the ceramics. A further conditioning is applied in order to stabilise the trimming result. The resistor elements are covered by a protective coating designed for electrical, mechanical and climatic protection. The terminations receive a final pure tin on nickel plating. Five colour code rings designate the resistance value and tolerance in accordance with IEC 60062.

The result of the determined production is verified by an extensive testing procedure performed on 100 % of the individual resistors. Only accepted products are laid directly into the blister tape in accordance with **IEC 60 286-3** or bulk case in accordance with **IEC 60286-6**.

ASSEMBLY

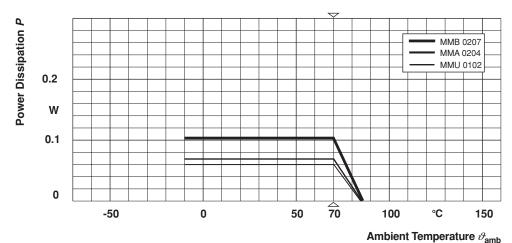
The resistors are suitable for processing on automatic SMD assembly systems. They are suitable for automatic soldering using wave, reflow or vapour phase. Excellent solderability is proven, even after extended storage in excess of 10 years. The encapsulation is resistant to all cleaning solvents commonly used in the electronics industry, including alcohols, esters and aqueous solutions. The resistors are completely lead (Pb)-free, the pure tin plating provides compatibility with lead (Pb)-free soldering processes. The immunity of the plating against tin whisker growth has been proven under extensive testing. All products comply with the CEFIC-EECA-EICTA list of legal restrictions on hazardous substances. This includes full compatibility with European RoHS directive.

APPROVALS

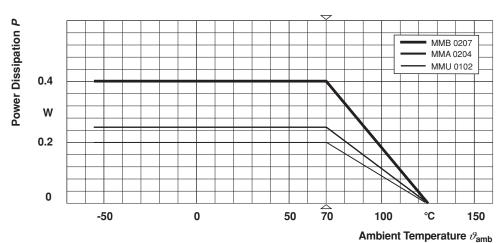
The resistors are tested in accordance with **EN 140401-803** (superseding **CECC 40401-803**) which refers to **EN 60115-1**, **EN 140400** and the variety of environmental test procedures of the **IEC 60068** series. Approval of conformity is indicated by the **CECC** logo on the package label.

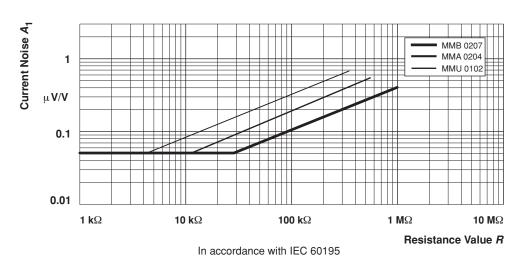
Vishay BEYSCHLAG has achieved "Approval of Manufacturer" in accordance with EN 100114-1. The release certificate for "Technology Approval Schedule" in accordance with CECC 240001 based on EN 100114-6 is granted for the Vishay BEYSCHLAG manufacturing process.

SPECIALS


On request, resistors are available with established reliability in accordance with **EN 140401-803 Version E**. Please refer to the special data sheet for information on failure rate level, available resistance ranges and ordering codes.

Vishay Beyschlag


Precision MELF Resistors


FUNCTIONAL PERFORMANCE

Derating - Precision Operation

Derating - Standard Operation

Current Noise - A₁

Precision MELF Resistors

Vishay Beyschlag

TESTS AND REQUIREMENTS

All tests are carried out in accordance with the following specifications:

EN 60115-1, generic specification

EN 140400, sectional specification

EN 140401-803, detail specification

The components are approved in accordance with the IECQ-CECC-system, where applicable. For the full test schedule refer to the documents listed above. The testing also covers most of the requirements specified by EIA/IS-703 and JIS-C-5202.

The tests are carried out in accordance with IEC 60068 and under standard atmospheric conditions in accordance with IEC 60068-1, 5.3. Climatic category LCT/UCT/56 (rated temperature range: Lower Category Temperature, Upper Category Temperature; damp heat, long term, 56 days) is valid.

Unless otherwise specified the following values apply:

Temperature: 15 °C to 35 °C Relative humidity: 45 % to 75 %

Air pressure: 86 kPa to 106 kPa (860 mbar to 1 060 mbar).

The components are mounted for testing on printed-circuit boards in accordance with EN 140400, 2.3.3, unless otherwise specified.

The requirements stated in Test Procedures and Requirements table are based on the required tests and permitted limits of EN 140401-803. However, some additional tests and a number of improvements against those minimum requirements have been included. The stated requirements for long-term tests are typically fulfilled with a statistical safety of at least \bar{x} +5 s.

TEST	TEST PROCEDURES AND REQUIREMENTS						
EN 60115-1 CLAUSE	IEC 60068-2 TEST METHOD	TEST	PROCEDURE	REQUIREMENTS PERMISSIBLE CHANGE (Δ <i>R/R</i>)			
			stability for product types:	STABILITY CLASS 0.05 OR BETTER	ASS 0.05 CLASS 0.1		
			MMU 0102	100 Ω to 100 kΩ	43 Ω to 147 kΩ	22 Ω to 332 kΩ	
			MMA 0204	100 Ω to 100 kΩ	43 Ω to 221 kΩ	10 Ω to 511 kΩ	
			MMB 0207	100 Ω to 270 kΩ	43 Ω to 510 kΩ	15 Ω to 1 MΩ	
4.5	-	resistance	-	± 0.5 %; ± 0.25 %; ± 0.1 %			
4.8.4.2	-	temperature coefficient	at 20 / -55 / 20 °C and 20 / 125 / 20 °C	± 25 ppm/K, ± 15 ppm/K			
4.25.1	-	endurance at 70 °C: precision operation mode	$U = \sqrt{P_{70} \times R}$ $\leq U_{\text{max}};$ 1.5 h on; 0.5 h off; $70 \text{ °C}; 1000 \text{ h}$		± (0.05 % <i>R</i> + 5 mΩ)		
		endurance at 70 °C: standard operation mode	70 °C; 8000 h $U = \sqrt{P_{70} \times R}$ $\leq U_{\text{max}};$ 1.5 h on; 0.5 h off; 70 °C; 1000 h 70 °C; 8000 h	$\pm (0.1 \% R + 5 \text{ m}\Omega)$ $\pm (0.1 \% R + 5 \text{ m}\Omega)$ $\pm (0.2 \% R + 5 \text{ m}\Omega)$			
4.25.3	-	endurance at upper category temperature	85 °C; 1000 h 125 °C; 1000 h	$\pm (0.02 \% R + 5 \text{ m}\Omega)$ $\pm (0.05 \% R + 5 \text{ m}\Omega)$	\pm (0.05 % R + 5 mΩ) \pm (0.1 % R + 5 mΩ)	\pm (0.1 %R + 5 mΩ) \pm (0.15 %R + 5 mΩ)	
4.24	78 (Cab)	damp heat, steady state	(40 ± 2) °C; 56 days; (93 ± 3) % RH	$\pm (0.05 \% R + 5 \text{ m}\Omega)$	± (0.1 %F	, ,	
4.39	67 (Cy)	damp heat, steady state, accelerated	(85 ± 2) °C; (85 ± 5) % RH; $U = 0.1 \times \sqrt{P_{70} \times R}$ ≤ 100 V; 1000 h	± (0.15 %R + 5 mΩ)	± (0.25 %)	R + 5 mΩ)	

Vishay Beyschlag

Precision MELF Resistors

1521	PROCEL	UKES AND KEQ	UIREMENTS - continued				
EN 60115-1 CLAUSE	IEC 60068-2 TEST METHOD	TEST	PROCEDURE	PERM	REQUIREMENTS ISSIBLE CHANGE	(Δ <i>R</i> / <i>R</i>)	
			stability for product types:	STABILITY CLASS 0.05 OR BETTER	STABILITY CLASS 0.1 OR BETTER	STABILITY CLASS 0.25 OR BETTER	
			MMU 0102	100 Ω to 100 kΩ	43 Ω to 147 kΩ	22 Ω to 332 kΩ	
			MMA 0204	100 Ω to 100 kΩ	43 Ω to 221 kΩ	10 Ω to 511 kΩ	
4.23		climatic sequence:	MMB 0207	100 Ω to 270 kΩ	43 Ω to 510 kΩ	15 Ω to 1 MΩ	
4.23.2	2 (Pa)	·					
	2 (Ba)	dry heat	UCT; 16 h				
4.23.3	30 (Db)	damp heat, cyclic	55 °C; 24 h; ≥ 90 % RH; 1 cycle				
4.23.4	1 (Aa)	cold	LCT; 2 h				
4.23.5 4.23.6	13 (M) 30 (Db)	low air pressure damp heat, cyclic	8.5 kPa; 2 h; (25 ± 10) °C 55 °C; 24 h; ≥ 90 % RH;				
			5 cycles LCT = -10 °C; UCT = 85 °C	$\pm (0.05 \% R + 5 \text{ m}\Omega)$	± (0.1 %R + 5 mΩ)	_	
			LCT = -55 °C; UCT = 125 °C	- (0.03 /6/1 + 3 11152)	± (0.1 /6/1+ 5 IIIs2)	± (0.1 %R + 5 mΩ	
_	1 (Aa)	cold	-55 °C; 2 h	$\pm (0.02 \%R + 5 \text{ m}\Omega)$			
4.19	14 (Na)	rapid change of temperature	30 minutes at LCT; 30 minutes at UCT; LCT = -10 °C; UCT = 85 °C				
			5 cycles	\pm (0.01 % R + 5 mΩ)	$\pm (0.02 \% R + 5 \text{ m}\Omega)$	-	
			1000 cycles	\pm (0.1 % R + 5 m Ω)	\pm (0.1 % R + 5 m Ω)	-	
			LCT = -55 °C; UCT = 125 °C				
			5 cycles 1000 cycles	- -	-	$\pm (0.025 \%R + 5 \text{ m}\Omega)$ $\pm (0.2 \%R + 5 \text{ m}\Omega)$	
4.13	-	short time overload; precision operation mode	$U = 2.5 \times \sqrt{P_{70} \times R}$	\pm (0.01 % R + 5 mΩ)	\pm (0.02 % R + 5 mΩ)	± (0.03 %R + 5 mΩ	
		short time overload;	$\leq 2 \times U_{\text{max}}; 5 \text{ s}$		$\pm (0.05 \% R + 5 mΩ)$		
		standard operation mode			_ (
4.27	-	single pulse high voltage overload; standard operation mode	severity no. 4: $U = 10 \times \sqrt{P_{70} \times R}$ $\leq 2 \times U_{\text{max}};$ 10 pulses 10 µs/700 µs	± (0.25 %R + 5 mΩ) ⁽¹⁾			
4.37	-	periodic electric overload; standard operation mode	$U = \sqrt{15 \times P_{70} \times R}$ $\leq 2 \times U_{\text{max}};$ 0.1 s on; 2.5 s off; 1000 cycles	± (0.5 %R + 5 mΩ) ⁽¹⁾			
4.22	6 (Fc)	vibration	endurance by sweeping; 10 to 2 000 Hz; no resonance; amplitude ≤ 1.5 mm or ≤ 200 m/s²; 6 h	± (0.01 %R + 5 mΩ)	± (0.02 %R + 5 mΩ)	± (0.03 %R + 5 mΩ	

Document Number: 28714 Revision: 26-Feb-04

www.vishay.com

Precision MELF Resistors

Vishay Beyschlag

TEST	TEST PROCEDURES AND REQUIREMENTS - continued							
EN 60115-1 CLAUSE	IEC 60068-2 TEST METHOD	TEST	PROCEDURE	REQUIREMENTS PERMISSIBLE CHANGE $(\Delta R/R)$				
			stability for product types:	STABILITY CLASS 0.05 OR BETTER	STABILITY CLASS 0.1 OR BETTER	STABILITY CLASS 0.25 OR BETTER		
			MMU 0102	100 Ω to 100 kΩ	43 Ω to 147 kΩ	22 Ω to 332 kΩ		
			MMA 0204	100 Ω to 100 kΩ	43 Ω to 221 kΩ	10 Ω to 511 kΩ		
			MMB 0207	100 Ω to 270 kΩ	43 Ω to 510 kΩ	15 Ω to 1 MΩ		
4.17.2	58 (Td)	solderability	solder bath method; SnPb40; non-activated flux; (215 \pm 3) °C; (3 \pm 0.3) s	; good tinning (≥ 95 % covered); no visible damage				
			solder bath method; SnAg3Cu0,5 or SnAg3,5; non-activated flux; (235 ± 3) °C; (2 ± 0.2) s	good tinning (≥ 95 % covered); no visible dama¢				
4.18.2	58 (Td)	resistance to soldering heat	solder bath method; (260 \pm 5) °C; (10 \pm 1) s	note	e 2	± (0.05 % R + 10 mΩ)		
			reflow method 2 (IR/forced gas convection); (260 ± 5) °C; (10 ± 1) s	\pm (0.01 % R + 5 m Ω)	± (0.025 %			
4.29	45 (XA)	component solvent resistance	isopropyl alcohol; 50 °C; method 2	no visible damage				
4.30	45 (XA)	solvent resistance of marking	isopropyl alcohol; 50 °C; method 1, toothbrush	marking legible; no visible damage				
4.32	21 (Ue ₃)	shear (adhesion)	45 N		no visible damage			
4.33	21 (Ue ₁)	substrate bending	depth 2 mm, 3 times	no visible damage, no open circuit in bent position				
						$\pm (0.05 \% R + 10 \text{ m}\Omega)^{(3)}$		
4.7	-	voltage proof	$U_{\rm rms} = U_{\rm ins}$; 60 s	no f	lashover or breakdo	wn		
4.35	-	flammability	<i>IEC 60 695-2-2</i> , needle flame test; 10 s	n	o burning after 30 s			

Note

- 1. The pulse load stability of professional MELF resistors applies for precision resistors also. However, severe pulse loads are likely to jeopardize precision stability requirements.
- 2. Wave soldering is not recommended.
- 3. Special requirements apply to MICRO-MELF, MMU 0102:
 - R < 100 Ω: \pm (0.15 %R + 10 mΩ)
 - -100 $\Omega \le R \le$ 10 k Ω : ± 0.1 % R
 - R > 10 k Ω : \pm 0.05 % R

Vishay Beyschlag

Precision MELF Resistors

ORDERING INFORMATION

Components may be ordered by using either a simple clear text ordering code, see "Type description and ordering code" or Vishay BCcomponents' unique 12NC.

Numeric Ordering Code (12NC)

- The resistors have a 12-digit ordering code starting with 2312.
- The subsequent 4 digits indicate the resistor type, specification and packaging; see the 12NC Ordering Code table.
- The remaining 4 digits indicate the resistance value:
 - The first 3 digits indicate the resistance value.
 - The last digit indicates the resistance decade in accordance with the 12NC Indicating Resistance Decade table.

Last Digit of 12NC Indicating Resistance Decade

RESISTANCE DECADE	LAST DIGIT
10 Ω to 99.9 Ω	9
100 Ω to 999 Ω	1
1 kΩ to 9.99 kΩ	2
10 kΩ to 99.9 kΩ	3
100 kΩ to 999 kΩ	4
1 MΩ to 9.99 MΩ	5

Ordering Example

The ordering code of a MMA 0204 resistor, value 47 k Ω and TC 25 with \pm 0.1 % tolerance, supplied in blister tape of 3000 units per reel is: 2312 156 74703.

12NC ORDERING CODE - resistor type and packaging									
DI	ESCRIPTION		ORDERING CODE 2312						
				BLIST	ER TAPE ON	REEL		BULK	CASE
TYPE	T.C.	TOL.	B1 1000 units	B2 2000 units	BL 3000 units	B7 7000 units	B0 10000 units	M3 3000 units	M8 8000 units
	± 25 ppm/K	± 0.25 %	171 6	-	166 6	-	176 6	-	061 6
	± 25 ppm/K	± 0.1 %	171 7	-	166 7	-	176 7	-	061 7
MMU 0102		± 0.5 %	172 5	-	167 5	-	177 5	-	062 5
	± 15 ppm/K	± 0.25 %	172 6	-	167 6	-	177 6	-	062 6
		± 0.1 %	172 7	-	167 7	-	177 7	-	062 7
	1 05 nnm/l/	± 0.25 %	141 6	-	156 6	-	146 6	041 6	-
	± 25 ppm/K	± 0.1 %	141 7	-	156 7	-	146 7	041 7	-
MMA 0204		± 0.5 %	142 5	-	157 5	-	147 5	042 5	-
	± 15 ppm/K	± 0.25 %	142 6	-	157 6	-	147 6	042 6	-
		± 0.1 %	142 7	-	157 7	-	147 7	042 7	-
	1 0E nom/1/	± 0.25 %	181 6	196 6	-	186 6	-	-	-
MMB 0207	± 25 ppm/K	± 0.1 %	181 7	196 7	-	186 7	-	-	-
	± 15 ppm/K	± 0.1 %	182 7	197 7	-	187 7	-	-	-

Resistance ranges printed in bold are preferred T.C. / tolerance combinations with optimized availability.